855 resultados para JAK signalling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ovarian cancer is the leading cause of cancer-related death in women, and the need for curative treatments is urgent. This study characterised an enzyme associated with the most lethal form of ovarian cancer, showing this enzyme to be a promising therapeutic target. Fifteen novel protein targets and key signalling pathways were determined to be regulated by this enzyme, kallikrein-related peptidase 7, in the ovarian tumour microenvironment, highlighting its involvement in cancer progression. Inhibition of this enzyme may be a useful therapeutic option to improve the life expectancy of women suffering from this cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The circulatory system consists of two vessel types, which act in concert but significantly differ from each other in several structural and functional aspects as well as in mechanisms governing their development. The blood vasculature transports oxygen, nutrients and cells to tissues whereas the lymphatic vessels collect extravasated fluid, macromolecules and cells of the immune system and return them back to the blood circulation. Understanding the molecular mechanisms behind the developmental and functional regulation of the lymphatic system long lagged behind that of the blood vasculature. Identification of several markers specific for the lymphatic endothelium, and the discovery of key factors controlling the development and function of the lymphatic vessels have greatly facilitated research in lymphatic biology over the past few years. Recognition of the crucial importance of lymphatic vessels in certain pathological conditions, most importantly in tumor metastasis, lymphedema and inflammation, has increased interest in this vessel type, for so long overshadowed by its blood vascular cousin. VEGF-C (Vascular Endothelial Growth Factor C) and its receptor VEGFR-3 are essential for the development and maintenance of embryonic lymphatic vasculature. Furthermore, VEGF-C has been shown to be upregulated in many tumors and its expression found to positively correlate with lymphatic metastasis. Mutations in the transcription factor FOXC2 result in lymphedema-distichiasis (LD), which suggests a role for FOXC2 in the regulation of lymphatic development or function. This study was undertaken to obtain more information about the role of the VEGF-C/VEGFR-3 pathway and FOXC2 in regulating lymphatic development, growth, function and survival in physiological as well as in pathological conditions. We found that the silk-like carboxyterminal propeptide is not necessary for the lymphangiogenic activity of VEGF-C, but enhances it, and that the aminoterminal propeptide mediates binding of VEGF-C to the neuropilin-2 coreceptor, which we suggest to be involved in VEGF-C signalling via VEGFR-3. Furthermore, we found that overexpression of VEGF-C increases tumor lymphangiogenesis and intralymphatic tumor growth, both of which could be inhibited by a soluble form of VEGFR-3. These results suggest that blocking VEGFR-3 signalling could be used for prevention of lymphatic tumor metastasis. This might prove to be a safe treatment method for human cancer patients, since inhibition of VEGFR-3 activity had no effect on the normal lymphatic vasculature in adult mice, though it did lead to regression of lymphatic vessels in the postnatal period. Interestingly, in contrast to VEGF-C, which induces lymphangiogenesis already during embryonic development, we found that the related VEGF-D promotes lymphatic vessel growth only after birth. These results suggest, that the lymphatic vasculature undergoes postnatal maturation, which renders it independent of ligand induced VEGFR-3 signalling for survival but responsive to VEGF-D for growth. Finally, we show that FOXC2 is necessary for the later stages of lymphatic development by regulating the morphogenesis of lymphatic valves, as well as interactions of the lymphatic endothelium with vascular mural cells, in which it cooperates with VEGFR-3. Furthermore, our study indicates that the absence of lymphatic valves, abnormal association of lymphatic capillaries with mural cells and an increased amount of basement membrane underlie the pathogenesis of LD. These findings have given new insight into the mechanisms of normal lymphatic development, as well as into the pathogenesis of diseases involving the lymphatic vasculature. They also reveal new therapeutic targets for the prevention and treatment of tumor metastasis and lymphatic vascular failure in certain forms of lymphedema. Several interesting questions were posed that still need to be addressed. Most importantly, the mechanism of VEGF-C promoted tumor metastasis and the molecular nature of the postnatal lymphatic vessel maturation remain to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ectomycorrhizal formation between the host tree, Pinus sylvestris and fungal symbiont, Suillus bovinus was investigated at the molecular level by isolating genes regulating the organization of the actin cytoskeleton in the fungal partner S. bovinus. An Agrobacterium tumefaciens mediated transformation (ATMT) system was developed for the ectomycorrhizal fungi in order to assign specific functions to the cloned molecules. The developed ATMT system was also used to transform a plant pathogenic fungus, Helminthosporium turcicum, to hygromycin B resistance. Small GTPases Cdc42 and Rac1, the regulators of actin cytoskeleton in eukaryotes were isolated from S. bovinus. Sbcdc42 and Sbrac1, are both expressed in vegetative and in the symbiotic hyphae of S. bovinus . Using IIF microscopy, Cdc42 and actin were co-localized at the tips of vegetative hyphae and were visualized in association with the plasma membrane in swollen cells typical to the symbiotic hyphae. These results suggest that the small GTPases Cdc42 may play a significant role in the polarized growth of S. bovinus hyphae and regulate fungal morphogenesis during ectomycorrhiza formation through reorganization of the actin cytoskeleton. The functional equality of Cdc42 was tested in yeast complementation experiments using a Saccharomyces cerevisiae temperature sensitive mutant, cdc42-1ts. The genomic clone of CDC42 was isolated from S. bovinus genomic DNA via specific primers for Cdc42. The analogous S. cerevisiae cdc42 mutations, dominant active G12V and dominant negative D118A, were generated in the Sbcdc42 gene by in-vitro mutagenesis. The ectomycorrhizal fungi, S. bovinus, P. involutus and H. cylindroporum were transformed using ATMT and phleomycin as a selectable marker. PCR screeing suggested that the T-DNA was inserted in all the three fungal genomes but the fate of integration could not be proved by Southern blot analysis. An alternative Agrobacterium strain, AGL-1 and selection marker, hygromycin was used to transform our model fungus S. bovinus. PCR and Southern analysis suggested an improved efficiency of transformation. All the transformed fungal colonies selected for hygromycin gave positives in PCR and the Southerns showed multiple or single copy T-DNA integrations into the S. bovinus genome. Using the same Agrobacterium strain and the selectable marker, a maize pathogen, H. turcicum was also subjected to ATMT. The H. turcicum transformation data suggested the single copy T-DNA integrations into the genome of the screened transformants that further confirms wider applicability of the ATMT. The plasmids carrying the wild-type (pHGCDC42) and the mutated Sbcdc42 alleles (pHGGV; pHGDA) under Agaricus bisporus gpd promoter were constructed in an A. tumefaciens vector. ATMT was used to transform S. bovinus with the plasmids carrying the wild-type and mutated Sbcdc42 alleles. The isolation of Sbcdc42 and Sbrac1 genes and some other functionally related genes from ectomycorrhizal fungus, S. bovinus will form the basis of future work to resolve the signalling pathway leading to ectomycorrhizal symbiosis. The development of ATMT system will be a valuable tool in analysing the exact function of signalling pathway components in ectomycorrhizal symbiosis or in plant pathogenic interactions. The transformation frequency and broad applicability along with the simplicity of T-DNA integration make Agrobacterium a valuable, new and a powerfull tool for targeted and insertional mutagenesis in these plant associated fungi. The developed ATMT systems should therefore make it possible to generate large number of transformants with tagged genes which could then be screened for their specific roles in symbiosis and pathogenecity, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) family ligands: GDNF, neurturin, persephin and artemin, signal through a receptor tyrosine kinase Ret by binding first to a co-receptor (GFRα1-4) that is attached to the plasma membrane. The GDNF family factors can support the survival of various peripheral and central neuronal populations and have important functions also outside the nervous system, especially in kidney development. Activating mutations in the RET gene cause tumours in neuroendocrine cells, whereas inactivating mutations in RET are found in patients with Hirschsprung s disease (HSCR) characterized by loss of ganglionic cells along the intestine. The aim of this study was to examine the in vivo functions of neurturin receptor GFRα2 and persephin receptor GFRα4 using knockout (KO) mice. Mice lacking GFRα2 grow poorly after weaning and have deficits in parasympathetic and enteric innervation. This study shows that impaired secretion of the salivary glands and exocrine pancreas contribute to growth retardation in GFRα2-KO mice. These mice have a reduced number of intrapancreatic neurons and decreased cholinergic innervation of the exocrine pancreas as well as reduced excitatory fibres in the myenteric plexus of the small intestine. This study also demonstrates that GFRα2-mediated Ret signalling is required for target innervation and maintenance of soma size of sympathetic cholinergic neurons and sensory nociceptive IB4-binding neurons. Furthermore, lack of GFRα2 in mice results in deficient perception of temperatures above and below thermoneutrality and in attenuated inflammatory pain response. GFRα4 is co-expressed with Ret predominantly in calcitonin-producing thyroid C-cells in the mouse. In this study GFRα4-deficient mice were generated. The mice show no gross developmental deficits and have a normal number of C-cells. However, young but not adult mice lacking GFRα4 have a lower production of calcitonin in thyroid tissue and consequently, an increased bone formation rate. Thus, GFRα4/Ret signalling may regulate calcitonin production. In conclusion, this study reveals that GFRα2/Ret signalling is crucial for the development and function of specific components of the peripheral nervous system and that GFRα4-mediated Ret signalling is required for controlling transmitter synthesis in thyroid C-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PATHOGENIC MECHANISMS OF PLOSL Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), also known as Nasu-Hakola disease, is a recessively inherited disease of brain and bone. PLOSL manifests as early-onset progressive dementia and bone fractures. Mutations in the TYROBP (DAP12) and TREM2 genes have been identified as the primary cause of PLOSL. DAP12 and TREM2 encode important signalling molecules in cells of the innate immune system. The mechanism by which loss-of-function of the DAP12/TREM2 signalling complex leads to PLOSL is currently unknown. The aim of this thesis work was to gain insight into the pathogenic mechanisms behind PLOSL. To first identify the central nervous system (CNS) cell types that express both Dap12 and Trem2, the expression patterns of Dap12 and Trem2 in mouse CNS were analyzed. Dap12 and Trem2 expression was seen from embryonic stage to adulthood and microglial cells and oligodendrocytes were identified as the major Dap12/Trem2 producing cells of the CNS. To subsequently identify the pathways and biological processes associated with DAP12/TREM2 mediated signalling in human cells, genome wide transcript analysis of in vitro differentiated dendritic cells (DCs) of PLOSL patients representing functional knockouts of either DAP12 or TREM2 was performed. Both DAP12 and TREM2 deficient cells differentiated into DCs and responded to pathogenic stimuli. However, the DCs showed morphological differences compared to control cells due to defects in the actin filaments. Transcript profiles of the patient DCs showed differential expression of genes involved in immune response and for genes earlier associated with other disorders of the CNS as well as genes involved in the remodeling of bone, linking the findings with the tissue phenotype of PLOSL patients. To analyze the effect of Dap12 deficiency in the CNS, genome wide expression analysis of Dap12 deficient mouse brain and Dap12 deficient microglia as well as functional analysis of Dap12 deficient microglia was performed. Regulation of several pathways involved in synaptic function and transcripts coding for the myelin components was seen in Dap12 knockout mice. Decreased migration, morphological changes and shortened lifespan of the Dap12 knockout microglia was further observed. Taken together, this thesis work showed that both Dap12 and Trem2 are expressed by CNS microglia and that Dap12 deficiency results in functional defects of these cells. Lack of Dap12 in the CNS also leads to synaptic abnormalities even before pathological changes are seen in the tissue level.This work further showed that loss-of-function of DAP12 or TREM2 leads to changes in morphology and gene expression in human dendritic cells. These data underline the functional diversity of the molecules of the innate immune system and implies their significant contribution also in demyelinating CNS disorders, including those resulting in dementia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the resistance of bacteria to conventional antibiotics has become an increasing problem, new antimicrobial drugs are urgently needed. One possible source of new antibacterial agents is a group of cationic antimicrobial peptides (CAMPs) produced by practically all living organisms. These peptides are typically small, amphipathic and positively charged and contain well defined a-helical or b-sheet secondary structures. The main antibacterial action mechanism of CAMPs is considered to be disruption of the cell membrane, but other targets of CAMPs also exist. Some bacterial species have evolved defence mechanisms against the harmful effects of CAMPs. One of the most effective defence mechanisms is reduction of the net negative charge of bacterial cell surfaces. Global analysis of gene expression of two Gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, was used to further study the stress responses induced by different types of CAMPs. B. subtilis cells were treated with sublethal concentrations of a-helical peptide LL-37, b-sheet peptide protegrin 1 or synthetic analogue poly-L-lysine, and the changes in gene expression were studied using DNA macroarrays. In the case of S. aureus, three different a-helical peptides were selected for the transcriptome analyses: temporin L, ovispirin-1 and dermaseptin K4-S4(1-16). Transcriptional changes caused by peptide stress were examined using oligo DNA microarrays. The transcriptome analysis revealed two main cell signalling mechanisms mediating CAMP stress responses in Gram-positive bacteria: extracytoplasmic function (ECF)sigma factors and two-component systems (TCSs). In B. subtilis, ECF sigma factors sigW and sigM as well as TCS LiaRS responded to the cell membrane disruption caused by CAMPs. In S. aureus, CAMPs caused a similar stress response to antibiotics interfering in cell wall synthesis, and TCS VraSR was strongly activated. All of these transcriptional regulators are known to respond to several compounds other than CAMPs interfering with cell envelope integrity, suggesting that they sense cell envelope stress in general. Among the most strongly induced genes were yxdLM (in B. subtilis) and vraDE (in S. aureus) encoding homologous ABC transporters. Transcription of yxdLM and vraDE operons is controlled by TCSs YxdJK and ApsRS, respectively. These TCSs seemed to be responsible for the direct recognition of CAMPs. The yxdLM operon was specifically induced by LL-37, but its role in CAMP resistance remained unclear. VraDE was proven to be a bacitracin transporter. We also showed that the net positive charge of the cell wall affects the signalrecognition of different TCSs responding to cell envelope stress. Inactivation of the Dlt system responsible for the D-alanylation of teichoic acids had a strong and differential effect on the activity of the studied TCSs, depending on their functional role in cells and the stimuli they sense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinases phosphorylate several cellular proteins providing control mechanisms for various signalling processes. Their activity is impeded in a number of ways and restored by alteration in their structural properties leading to a catalytically active state. Most protein kinases are subjected to positive and negative regulation by phosphorylation of Ser/Thr/Tyr residues at specific sites within and outside the catalytic core. The current review describes the analysis on 3D structures of protein kinases that revealed features distinct to active states of Ser/Thr and Tyr kinases. The nature and extent of interactions among well-conserved residues surrounding the permissive phosphorylation sites differ among the two classes of enzymes. The network of interactions of highly conserved Arg preceding the catalytic base that mediates stabilization of the activation segment exemplifies such diverse interactions in the two groups of kinases. The N-terminal and the C-terminal lobes of various groups of protein kinases further show variations in their extent of coupling as suggested from the extent of interactions between key functional residues in activation segment and the N-terminal αC-helix. We observe higher similarity in the conformations of ATP bound to active forms of protein kinases compared to ATP conformations in the inactive forms of kinases. The extent of structural variations accompanying phosphorylation of protein kinases is widely varied. The comparison of their crystal structures and the distinct features observed are hoped to aid in the understanding of mechanisms underlying the control of the catalytic activity of distinct subgroups of protein kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The actin cytoskeleton is essential for a large variety of cell biological processes. Actin exists in either a monomeric or a filamentous form, and it is very important for many cellular functions that the local balance between these two actin populations is properly regulated. A large number of proteins participate in the regulation of actin dynamics in the cell, and twinfilin, one of the proteins examined in this thesis, belongs to this category. The second level of regulation involves proteins that crosslink or bundle actin filaments, thereby providing the cell with a certain shape. α-Actinin, the second protein studied, mainly acts as an actin crosslinking protein. Both proteins are conserved in organisms ranging from yeast to mammals. In this thesis, the roles of twinfilin and α-actinin in development were examined using Drosophila melanogaster as a model organism. Twinfilin is an actin monomer binding protein that is structurally related to cofilin. In vitro, twinfilin reduces actin polymerisation by sequestering actin monomers. The Drosophila twinfilin (twf) gene was identified and found to encode a protein functionally similar to yeast and mammalian twinfilins. A strong hypomorphic twf mutation was identified, and flies homozygous for this allele were viable and fertile. The adult twf mutant flies displayed reduced viability, a rough eye phenotype and severely malformed bristles. The shape of the adult bristle is determined by the actin bundles that are regularly spaced around the perimeter of the developing pupal bristles. Examination of the twf pupal bristles revealed an increased level of filamentous actin, which in turn resulted in splitting and displacement of the actin bundles. The bristle defect was rescued by twf overexpression in developing bristles. The Twinfilin protein was localised at sites of actin filament assembly, where it was required to limit actin polymerisation. A genetic interaction between twinfilin and twinstar (the gene encoding Cofilin) was detected, consistent with the model predicting that both proteins act to limit the amount of filamentous actin. α-Actinin has been implicated in several diverse cell biological processes. In Drosophila, the only function for α-actinin yet known is in the organisation of the muscle sarcomere. Muscle and non-muscle cells utilise different α-actinin isoforms, which in Drosophila are produced by alternative splicing of a single gene. In this work, novel α-actinin deletion alleles, including ActnΔ233, were generated, which specifically disrupted the transcript encoding the non-muscle α-actinin isoform. Nevertheless, ActnΔ233 homozygous mutant flies were viable and fertile with no obvious defects. By comparing α-actinin protein distribution in wild type and ActnΔ233 mutant animals, it could be concluded that non-muscle α-actinin is the only isoform expressed in young embryos, in the embryonic central nervous system and in various actin-rich structures of the ovarian germline cells. In the ActnΔ233 mutant, α-actinin was detected not only in muscle tissue, but also in embryonic epidermal cells and in certain follicle cell populations in the ovaries. The population of α-actinin protein present in non-muscle cells of the ActnΔ233 mutant is referred to as FC-α-actinin (Follicle Cell). The follicular epithelium in the Drosophila ovary is a well characterised model system for studies on patterning and morphogenesis. Therefore, α-actinin expression, regulation and function in this tissue were further analysed. Examination of the α-actinin localisation pattern revealed that the basal actin fibres of the main body follicle cells underwent an organised remodelling during the final stages of oogenesis. This involved the assembly of a transient adhesion site in the posterior of the cell, in which α-actinin and Enabled (Ena) accumulated. Follicle cells genetically manipulated to lack all α-actinin isoforms failed to remodel their cytoskeleton and translocate Ena to the posterior of the cell, while the actin fibres as such were not affected. Neither was epithelial morphogenesis disrupted. The reorganisation of the basal actin cytoskeleton was also disturbed following ectopic expression of Decapentaplegic (Dpp) or as a result of a heat shock. At late oogenesis, the main body follicle cells express both non-muscle α-actinin and FC-α-actinin, while the dorsal anterior follicle cells express only non-muscle α-actinin. The dorsal anterior cells are patterned by the Dpp and Epidermal growth factor receptor (EGFR) signalling pathways, and they will ultimately secrete the dorsal appendages of the egg. Experiments involving ectopic activation of EGFR and Dpp signalling showed that FC-α-actinin is negatively regulated by combined EGFR and Dpp signalling. Ubiquitous overexpression of the adult muscle-specific α-actinin isoform induced the formation of aberrant actin bundles in migrating follicle cells that did not normally express FC-α-actinin, provided that the EGFR signalling pathway was activated in the cells. Taken together, this work contributes new data to our knowledge of α-actinin function and regulation in Drosophila. The cytoskeletal remodelling shown to depend on α-actinin function provides the first evidence that α-actinin has a role in the organisation of the cytoskeleton in a non-muscle tissue. Furthermore, the cytoskeletal remodelling constitutes a previously undescribed morphogenetic event, which may provide us with a model system for in vivo studies on adhesion dynamics in Drosophila.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four GDNF ligands (GDNF, neurturin, artemin and persephin), and mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF) protect midbrain dopaminergic neurons that degenerate in Parkinson's disease. Each GDNF ligand binds a specific coreceptor GDNF family receptor α (GFRα), leading to the formation of a heterotetramer complex, which then interacts with receptor tyrosine kinase RET, the signalling receptor. The present thesis describes the structural and biochemical characterization of the GDNF2-GFRα12 complex and the MANF and CDNF proteins. Previous and current mutation data and comparison between GDNF-GFRα1 and artemin-GFRα3 binding interfaces show that N162GFRα1, I175GFRα1, V230GFRα1, Y120GDNF and L114GDNF are the specificity determinants among different ligand-coreceptor pairs. The structure suggests that sucrose octasulphate, a heparin mimic, interacts with a region R190-K202 within domain 2 of GFRα1. Mutating these residues on the GFRα1 surface, which are not in the GDNF binding region, affected RET phosphorylation, which provides a putative RET binding region in domain 2 and 3 of GFRα1. The structural comparison of the GDNF-GFRα1 and artemin-GFRα3 complexes shows a difference in bend angle between the ligand monomers. This variation in bend angle of the ligand may affect the kinetics of RET phosphorylation. To confirm that the difference is not due to crystallization artefacts, I crystallized the GDNF-GFRα1 complex without SOS in different cell dimensions. The structure of the second GDNF-GFRα1 complex is very similar to the previous one, suggesting that the difference between the artemin-GFRα3 and GDNF-GFRα1 complexes are intrinsic, not due to crystal packing. Finally, MANF and CDNF are bifunctional proteins with extracellular neurotrophic activity and ER resident cytoprotective role. The crystal structures of MANF and CDNF are presented here. Intriguingly, the structures of both the neurotrophic factors do not show structural similarity to any of previously known growth factor superfamilies; instead they are similar to saposins, the lipid-binding proteins. The N-terminal domain of MANF and CDNF contain conserved lysines and arginines on its surface, which may interact with negatively charged head groups of phospholipids, as saposins do. Thus MANF and CDNF may provide neurotrophic activities by interacting with a lipo-receptor. The structure of MANF shows a CXXC motif forming internal disulphide bridge in the natively unfolded C-terminus. This motif is common to reductases and disulphide isomerases. It is thus tempting to speculate that the CXXC motif of MANF and CDNF may be involved in oxidative protein folding, which may explain its cytoprotective role in the ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multipotent stem cells can self-renew and give rise to multiple cell types. One type of mammalian multipotent stem cells are neural stem cells (NSC)s, which can generate neurons, astrocytes and oligodendrocytes. NSCs are likely involved in learning and memory, but their exact role in cognitive function in the developing and adult brain is unclear. We have studied properties of NSCs in fragile X syndrome (FXS), which is the most common form of inherited mental retardation. FXS is caused by the lack of functional fragile X mental retardation protein (FMRP). FMRP is involved in the regulation of postsynaptic protein synthesis in a group I metabotropic glutamate receptor 5 (mGluR5)-dependent manner. In the absence of functional FMRP, the formation of functional synapses is impaired in the forebrain which results in alterations in synaptic plasticity. In our studies, we found that FMRP-deficient NSCs generated more neurons and less glia than control NSCs. The newborn neurons derived from FMRP-deficient NSCs showed an abnormally immature morphology. Furthermore, FMRP-deficient NSCs exhibited aberrant oscillatory Ca2+ responses to glutamate, which were specifically abolished by an antagonist of the mGluR5 receptor. The data suggested alterations in glutamatergic differentiation of FMRP-deficient NSCs and were further supported by an accumulation of cells committed to glutamatergic lineage in the subventricular zone of the embryonic Fmr1-knockout (Fmr1-KO) neocortex. Postnatally, the aberrant cells likely contributed to abnormal formation of the neocortex. The findings suggested a defect in the differentiation of distinct glutamatergic mGluR5 responsive cells in the absence of functional FMRP. Furthermore, we found that in the early postnatal Fmr1-KO mouse brain, the expression of mRNA for regulator of G-protein signalling-4 (RGS4) was decreased which was in line with disturbed G-protein signalling in NSCs lacking FMRP. Brain derived neurotrophic factor (BDNF) promotes neuronal differentiation of NSCs as the absence of FMRP was shown to do. This led us to study the effect of impaired BDNF/TrkB receptor signaling on NSCs by overexpression of TrkB.T1 receptor isoform. We showed that changes in the relative expression levels of the full-length and truncated TrkB isoforms influenced the replication capacity of NSCs. After the differentiation, the overexpression of TrkB.T1 increased neuronal turnover. To summarize, FMRP and TrkB signaling are involved in normal differentiation of NSCs in the developing brain. Since NSCs might have potential for therapeutic interventions in a variety of neurological disorders, our findings may be useful in the design of pharmacological interventions in neurological disorders of learning and memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), are involved in the development, differentiation and maintenance of many types of neurons. They also have important functions outside the nervous system in the development of kidney, testis and thyroid gland. Each of these GFLs preferentially binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse GFRα4 gene yields three splice isoforms. These had been described as putative GPI-anchored, transmembrane and soluble forms. My goal was to characterise the function of the different forms of mouse GFRα4. I firstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought to be a crucial event for GDNF- and GFL-mediated signalling via RET. I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal differentiation or survival. These data show that GFRα4-TM is inactive as a receptor for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signalling via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated signaling. The most exciting part of my work was the finding that the putative soluble GFRα4 (GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the survival of CGN. Our findings are in line with a recent publication showing the GFRα4-sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the disease. Mammalian GFRα4 receptors all lack the first Cys-rich domain which is present in other GFRα receptors. In the final part of my work I have studied the function of this particular domain. I created a truncated GFRα1 construct lacking the first Cys-rich domain. Using binding assays in both cellular and cell-free systems, phosphorylation assays with RET, as well as neurite outgrowth assays, we found that the first Cys-rich domain contributes to an optimal function of GFRα1, by stabilizing the interaction between GDNF and GFRα1.