959 resultados para Insulin signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:This study documents the frequency of insulin-like growth factor-II (IGF-II) loss of imprinting (LOI) in a series of 87 bladder tissues. E-cadherin (CDH1) immunolocalization was also investigated due to the known redistribution of this adherence protein to the cytoplasm following exogenous exposure to IGF-II.
Experimental Design: Informative IGF-II cases were identified following DNA-PCR amplification and subsequent sequencing of the transcribable ApaI RFLP in exon 9 of IGF-II. Similar approaches using primer-specific cDNA templates identified the imprinting status of IGF-II in these informative cases. CDH1cellular localization was assessed on a tissue microarray platform of 114 urothelial carcinoma of the bladder (UCB) cases (70 pTanoninvasive and 44 pT1laminapropria invasive) using the commercially available Novocastra antibody.
Results: IGF-IILOI was evident in 7 of17 (41%) UCB tumors and 4 of11 (36%) tumor-associated normal urothelial samples.Two of four pT1grade 3 tumors, the subject of much debate concerning their suitability for radical cystectomy, showed LOI at the IGF-II locus. In those tumors showing IGF-II LOI, 4 of 7 (57%) displayed concomitant CDH1cytoplasmic staining. In contrast, only 3 of 10 (30%) IGF-IImaintenance ofimprinting tumorshad concomitant CDH1cytoplasmiclocalization. UCB cell lines displaying cytoplasmic CDH1immunolocalization expressed significantly higher levels of IGF-II (CAL29, HT1376, and RT112) compared with RT4, a cell line displaying crisp membranous CDH1staining. Finally, cytoplasmic CDH1staining was an independent predictor of a shorter time to recurrence independent of tumor grade and stage.
Conclusions: We suggest that CDH1 cytoplasmic immunolocalization as a result of increased IGF-II levels identifies those nonmuscle invasive presentations most likely to recur and therefore might benefit from more radical nonconserving bladder surgery

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induced in high glucose-1 (IHG-1) is an evolutionarily conserved gene transcript upregulated by high extracellular glucose concentrations, but its function is unknown. Here, it is reported that the abundance of IHG-1 mRNA is nearly 10-fold higher in microdissected, tubule-rich renal biopsies from patients with diabetic nephropathy compared with control subjects. In the diabetic nephropathy specimens, in situ hybridization localized IHG-1 to tubular epithelial cells along with TGF-beta1 and activated Smad3, suggesting a possible role in the development of tubulointerstitial fibrosis. Supporting this possibility, IHG-1 mRNA and protein expression also increased with unilateral ureteral obstruction. In the HK-2 proximal tubule cell line, overexpression of IHG-1 increased TGF-beta1-stimulated expression of connective tissue growth factor and fibronectin. IHG-1 was found to amplify TGF-beta1-mediated transcriptional activity by increasing and prolonging phosphorylation of Smad3. Conversely, inhibition of endogenous IHG-1 with small interference RNA suppressed transcriptional responses to TGF-beta1. In summary, IHG-1, which increases in diabetic nephropathy, may enhance the actions of TGF-beta1 and contribute to the development of tubulointerstitial fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammary epithelial cells cultured on a concentrated laminin-rich extracellular matrix formed 3D acinar structures that matured to polarized monolayers surrounding a lumen. In the absence of glucocorticoids mature acinus formation failed and the expression of an acinus-associated, activator protein 1 (AP1) and nuclear factor kappaB transcription factor DNA-binding profile was lost. Treatment with the JNK inhibitor, SP600125, caused similar effects, whereas normal organization of the mammary epithelial cells as acini caused JNK activation in a glucocorticoid-dependent manner. The forming acini expressed BRCA1, GADD45beta, MEKK4, and the JNK activating complex GADD 45beta-MEKK4 in a glucocorticoid-dependent fashion. JNK catalyzed phosphorylation of c-Jun was also detected in the acini. In addition, expression of beta4 integrin and in situ occupation of its promoter by AP1 components, c-Jun and Fos, was glucocorticoid dependent. These results suggest that glucocortocoid signaling regulates acinar integrity through a pathway involving JNK regulation of AP1 transcription factors and beta4 integrin expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two critical forms of dementia are Alzheimer's disease (AD) and vascular dementia (VD).The alterations of Ca2+/calmodulin/CaMKII/CaV1.2 signaling in AD and VD have not been well elucidated. Here we have demonstrated changes in the levels of CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF proteins by Western blot analysis and the co-localization of p-CaMKII/CaV1.2 by double-labeling immunofluorescence in the hippocampus of APP/PS1 mice and VD gerbils. Additionally, expression of these proteins and intracellular calcium levels were examined in cultured neurons treated with Aß1–42. The expression of CaV1.2 protein was increased in VD gerbils and in cultured neurons but decreased in APP/PS1 mice; the expression of calmodulin protein was increased in APP/PS1 mice and VD gerbils; levels of p-CaMKII, p-CREB and BDNF proteins were decreased in AD and VD models. The number of neurons in which p-CaMKII and CaV1.2 were co-localized, was decreased in the CA1 and CA3 regions in two models. Intracellular calcium was increased in the cultured neurons treated with Aß1–42. Collectively, our results suggest that the alterations in CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF can be reflective of an involvement in the impairment in memory and cognition in AD and VD models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The interleukin 10 knockout mouse (IL10-KO) is a model of human inflammatory bowel disease (IBD) used to Study host microbial interactions and the action of potential therapeutics. Using Affymetrix data analysis, important signaling pathways and transcription factors relevant to gut inflammation and antiinflammatory probiotics were identified.

Methods: Affymetrix microarray analysis on both wildtype (WT) and IL10-KO mice orally administered with and without the probiotic VSL#3 was performed and the results validated by real-time polymerase chain reaction (PCR), immunocytochemistry, proteomics, and histopathology. Changes in metabolically active bacteria were assessed with denaturing gradient gel electrophoresis (DGGE).

Results: Inflammation in IL10-KO mice was characterized by differential regulation of inflammatory, nuclear receptor, lipid, and xenobiotic signaling pathways. Probiotic intervention resulted in downregulation of CXCL9 (fold change [FC] = -3.98, false discovery rate [FDR] = 0.019), CXCL10 (FC = -4.83, FDR = 0.0008), CCL5 (FC -3.47 FDR = 0.017), T-cell activation (Itgal [FC = -4.72, FDR = 0.00009], Itgae [FC = -2.54 FDR = 0.0044]) and the autophagy gene IRGM (FC = -1.94, FDR = 0.01), a recently identified susceptibility gene in human IBD. Consistent with a marked reduction in integrins, probiotic treatment decreased the number of CCL5+ CD3+ double-positive T Cells and upregulated galectin2, which triggers apoptosis of activated T cells. Importantly, genes associated with lipid and PPAR signaling (PPAR alpha [FC = 2.36, FDR = 0.043], PPARGC1 alpha [FC 2.58, FDR = 0.016], Nrld2 [FC = 3.11, FDR = 0.0067]) were also upregulated. Altered microbial diversity was noted in probiotic-treated mice.

Conclusions: Bioinformatics analysis revealed important immune response. phagocytic and inflammatory pathways dominated by elevation of T-helper cell 1 type (TH1) transcription factors in IL10-KO mice. Probiotic intervention resulted in a site-specific reduction of these pathways but importantly upregulated PPAR, xenobiotic, and lipid signaling genes. potential antagonists of NF-kappa B inflammatory pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether obesity and insulin resistance associate with changes in the protein content of high-density lipoprotein (HDL) in 2 different groups of men by using targeted proteomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pericyte loss is a cardinal feature of early diabetic retinopathy. We previously reported that highly oxidized-glycated low density lipoprotein (HOG-LDL) induces pericyte apoptosis in vitro. In this study, we investigated the role of the mitogen-activated protein kinase (MAPK) signaling pathways in HOG-LDL-induced apoptosis in human pericytes.