937 resultados para FLOW-INJECTION DETERMINATION
Resumo:
A liquid chromatography method was developed and validated for the determination of phenobarbital in human plasma using phenytoin as internal standard. The drugs were extracted from plasma by liquid-liquid extraction and separated isocratically on a C12 analytical column, maintained at 35 ºC, with water:acetonitrile:methanol (58.8:15.2:26, v/v/v) as mobile phase, run at a flow rate of 1.2 mL/min with detection at 205 nm. The method was linear in the range of 0.1-4 μg/mL (r²=0.9999) and demonstrated acceptable results for the precision, accuracy and stability studies. The method was successfully applied for the bioequivalence study of two tablet formulations (test and reference) of phenobarbital 100 mg after single oral dose administration to healthy human volunteers.
Resumo:
Determination of free urinary cortisol is a test of choice in the diagnosis of Cushing's syndrome. In this study, cortisol was quantified using reversed-phase high-performance liquid chromatography (RP-HPLC) in urine samples previously extracted with ether and using triamcinolone acetonide as internal standard (IS). A BDS-Hypersil-C18® column, water-acetonitrile (72:28; v/v), with a flow rate of 1.0 mL/min and detection at 243 nm were used. This method showed to be both effective and efficient, with sensitivity and linearity ranging from 2.50 to 150 μg/L, and can be used in substitution to the radioimmunoassay technique within this concentration range.
Resumo:
The objective of this research was to develop and validate an alternative analytical method for quantitative determination of levofloxacin in tablets and injection preparations. The calibration curves were linear over a concentration range from 3.0 to 8.0 μg mL-1. The relative standard deviation was below 1.0% for both formulations and average recovery was 101.42 ± 0.45% and 100.34 ± 0.85% for tablets and injection formulations, respectively. The limit of detection and limit of quantitation were 0.08 and 0.25 μg mL-1, respectively. It was concluded that the developed method is suitable for the quality control of levofloxacin in pharmaceuticals formulations.
Resumo:
A sensitive RP-HPLC method with UV detection successfully measured phenol(s) in an ointment containing 3% Stryphnodendron adstringens extract. Chromatography used acetonitrile (0.05% trifluoroacetic acid):water (0.05% trifluoroacetic acid) (v/v), flow rate 0.8 mL min-1. Quantitation was accomplished by the external-standard method. Linearity for 2.00 to 16.00 μg mL-1 (gallic acid) and 1.14 to 18.24 μg mL-1 (gallocatechin) was established. Intra- and inter-day precision levels were under 5%. LOD and LOQ were 0.231 and 0.770 μg mL-1 (gallic acid) and 0.151 and 0.504 μg mL-1 (gallocatechin), respectively. Determination of phenols was unaffected by product excipients.
Resumo:
An isocratic reversed phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the simultaneous determination of gemifloxacin and diuretics (hydrochlorothiazide and furosemide) in bulk, dosage formulations and human serum at 232 nm. Chromatographic separation was achieved on Purospher Start C18 (250 mm x 4.6 mm, 5 µm) column using mobile phase, methanol: water: acetonitrile (70:25:5 v/v/v) adjusted to pH 3.0 via phosphoric acid 85% having flow rate of 0.8 mL min -1 at room temperature. Calibration curves were linear over range of 0.5-10 µg mL -1 with a correlation coefficient ± 0.999. LOD and LOQ were in the ranges of 0.75-2.56 µg mL -1. Intra and inter-run precision and accuracy results were 98.26 to 100.9.
Resumo:
Simultaneous determination of moxifloxacin (MOX) and H2-antagonists was first time developed in bulk and formulations. Purospher STAR C18 (250 x 4.6 mm, 5 μm) column was used. The mobile phase (methanol: water: ACN, 60:45:5 v/v/v, pH 2.7) was delivered at a flow rate of 1.0 mL min-1, eluent was monitored at 236, 270 and 310 nm for cimetidine, famotidine and ranitidine, respectively. The proposed method is specific, accurate (98-103%), precise (intra-day and inter-day variation 0.098-1.970%) and linear (r>0.998). The LOD and LOQ were 0.006-0.018 and 0.019-0.005 μg mL-1, respectively. The statistical parameters were applied to verify the results. The method is applicable to routine analysis of formulations and interaction of MOX with H2-antagonist.
Resumo:
A method using liquid chromatography has been developed and validated for determination of buclizine in pharmaceutical formulations and in release studies. Isocratic chromatography was performed on a C18 column with methanol:water (80:20 v/v, pH 2.6) as mobile phase, at a flow rate of 1.0 mL/min, and UV detection at 230 nm. The method was linear, accurate, precise, sensible and robust. The dissolution test was optimized and validated in terms of dissolution medium, apparatus agitation and rotation speed. The presented analytical and dissolution procedures can be conveniently adopted in the quality and stability control of buclizine in tablets and oral suspension.
Resumo:
A selective and accurate stability-indicating gradient reverse phase ultra performance liquid chromatographic method has been developed and validated for the simultaneous determination of nizatidine, methylparaben and propylparaben in pharmaceutical oral liquid formulation. The separation was achieved on Acquity UPLC TM HSS T3 1.8 µm column by using mobile phase containing a gradient mixture of solvent A (0.02 Mol L-1 KH2PO4, pH 7.5) and B (60:40 v/v mixture of methanol and acetonitrile) at flow rate of 0.4 mL min-1. Drug product was exposed to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The developed method was validated as per international ICH guidelines with respect to specificity, linearity, accuracy, precision and robustness.
Resumo:
A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm) column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35) and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999).
Resumo:
A method using HPLC-UV was developed and validated for the determination of etoposide incorporated into polycaprolactone implants. The method was carried out in isocratic mode using a C18 column (250 x 4.6 mm; 5 µm), at 25 ºC, with acetonitrile and acetic acid 4% (70:30) as mobile phase, a flow rate of 2 mL/min, and UV detection at 285 nm. The method was linear (r² > 0.99) over the range of 5 to 65 µg/mL, precise (RSD < 5%), accurate (recovery of 98.7%), robust, selective regarding excipient of the sample, and had a quantitation limit equal to 1.76 µg/mL. The validated method can be successfully employed for routine quality control analyses.
Resumo:
A fast and efficient method has been developed and validated for the determination of fipronil in bovine plasma. Samples were subjected to solid-phase extraction (SPE) followed by reversed phase liquid chromatography (LC) separation, using acetonitrile/water (60:40 v/v) as the mobile phase with a flow rate of 1.0 mL/min and ultraviolet (UV) detection at 210 nm. Ethiprole was used as the internal standard (IS). The method was found to be linear over the range 5-500 ng/mL (r = 0.999). The limit of quantitation (LOQ) was validated at 5 ng/mL. The method was successfully applied to monitor plasma concentrations following subcutaneous administration of fipronil in cattle.
Resumo:
In this paper, we describe the synthesis of an ion imprinted polymer (IIP) by homogeneous polymerization and its use in solid-phase to extract and preconcentrate zinc ions. Under optimal conditions (pH 5.0, preconcentration flow rate of 12.0 mL min-1, and eluted with 1.0 mol L-1 HNO3) this procedure allows the determination of zinc with an enrichment factor of 10.2, and with limits of detection and quantification of 1.5 and 5.0 µg L-1, respectively. The accuracy of our results was confirmed by analysis of tap water and certified reference materials: NIST 1570a (Spinach leaves) and NIST 1515 (Apple leaves).
LOW COST ANALYZER FOR THE DETERMINATION OF PHOSPHORUS BASED ON OPEN-SOURCE HARDWARE AND PULSED FLOWS
Resumo:
The need for automated analyzers for industrial and environmental samples has triggered the research for new and cost-effective strategies of automation and control of analytical systems. The widespread availability of open-source hardware together with novel analytical methods based on pulsed flows have opened the possibility of implementing standalone automated analytical systems at low cost. Among the areas that can benefit from this approach are the analysis of industrial products and effluents and environmental analysis. In this work, a multi-pumping flow system is proposed for the determination of phosphorus in effluents and polluted water samples. The system employs photometric detection based on the formation of molybdovanadophosphoric acid, and the fluidic circuit is built using three solenoid micropumps. The detection is implemented with a low cost LED-photodiode photometric detection system and the whole system is controlled by an open-source Arduino Uno microcontroller board. The optimization of the timing to ensure the color development and the pumping cycle is discussed for the proposed implementation. Experimental results to evaluate the system behavior are presented verifying a linear relationship between the relative absorbance and the phosphorus concentrations for levels as high as 50 mg L-1.
Resumo:
Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) using the fluorescent probes Calcein acetoxy methyl ester (Calcein AM), carboxyfluorescein diacetate (cFDA), and propidium iodide (PI) in combination with flow cytometry was evaluated. Heat-treated and viable (non-treated) Cmm cells labeled with Calcein AM, cFDA, PI, or combinations of Calcein AM and cFDA with PI, could be distinguished based on their fluorescence intensity in flow cytometry analysis. Non-treated cells showed relatively high green fluorescence levels due to staining with either Calcein AM or cFDA, whereas damaged cells (heat-treated) showed high red fluorescence levels due to staining with PI. Flow cytometry also allowed a rapid quantification of viable Cmm cells labeled with Calcein AM or cFDA and heat-treated cells labeled with PI. Therefore, the application of flow cytometry in combination with fluorescent probes appears to be a promising technique for assessing viability of Cmm cells when cells are labeled with Calcein AM or the combination of Calcein AM with PI.
Resumo:
Silica gel chemically modified with 2-Aminotiazole groups, abbreviated as SiAT, was used for preconcentration of copper, zinc, nickel and iron from kerosene, normally used as a engine fuel for airplanes. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl- 0.25-2.00 mol L-1) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for copper, iron, nickel and zinc are 0.77, 2.92, 1.73 and 0.097 mg L-1, respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in kerosene using flame AAS for their quantification.