908 resultados para Espectroscopia de reflectância difusa
Resumo:
Methotrexate (MTX) is a drug used in the chemotherapy of some kind of cancers, autoimmune diseases and non inflammatory resistant to corticosteroids uveits. However, the rapid plasmatic elimination limits its therapeutic success, which leads to administration of high doses to maintain the therapeutic levels in the target tissues, occurring potential side effects. The aim of this study was to obtain spray dried biodegradable poly-lactic acid co-glycolic acid (PLGA) microparticles containing MTX. Thus, suitable amounts of MTX and PLGA were dissolved in appropriate solvent system to obtain solutions at different ratios drug/polymer (10, 20, 30 and 50% m/m). The physicochemical characterizing included the quantitative analysis of the drug using a validate UV-VIS spectrophotometry method, scanning electron microscopy (SEM), infrared spectrophotometry (IR), thermal analyses and X-ray diffraction analysis. The in vitro release studies were carried out in a thermostatized phosphate buffer pH 7.4 (0.05 M KH2PO4) medium at 37°C ± 0.2 °C. The in vitro release date was subjected to different kinetics release models. The MTX-loaded PLGA microparticles showed a spherical shape with smooth surface and high level of entrapped drug. The encapsulation efficiency was greater then 80%. IR spectroscopy showed that there was no chemical bond between the compounds, suggesting just the possible occurrence of hydrogen bound interactions. The thermal analyses and X-ray diffraction analysis shown that MTX is homogeneously dispersed inside polymeric matrix, with a prevalent amorphous state or in a stable molecular dispersion. The in vitro release studies confirmed the sustained release for distinct MTX-loaded PLGA microparticles. The involved drug release mechanism was non Fickian diffusion, which was confirmed by Kornmeyer-Peppas kinetic model. The experimental results demonstrated that the MTX-loaded PLGA microparticles were successfully obtained by spray drying and its potential as prolonged drug release system.
Resumo:
In Brazil, several species of scorpions are known to cause accidents which can lead to death, which are mainly belonging to the genus Tityus. The scorpion Tityus serrulatus is the main responsible for more severe cases. Anti-scorpion serums are routinely produced by various institutions, despite their effectiveness, quality and action depends on how quickly treatment is started. Studies have been developed in the search for appropriate technologies to encapsulate and release recombinant or natives proteins capable of inducing antibody production. In this context, chitosan copolymer which can be obtained from the partial deacetylation of chitin or in some microorganisms and it is biocompatible and biodegradable has been widely used for this purpose. This study aimed to search for a system release from chitosan nanoparticles for peptide / protein of the venom of the scorpion T. serrulatus, able to provide a new model of immunization in animals, in order to obtain a potential novel polyclonal serum, anti-venom T. serrulatus. The chitosan nanoparticles were prepared by ionic gelation with polyanion tripolyphosphate (TPP). After standardizing the concentrations of TPP and chitosan was evaluated the efficiency of incorporation of bovine serum albumin (BSA) and scorpion venom, showed particle size compatible with the intended purpose. The particles showed adequate size around 200nm. The crosslinking was confirmed by absorption spectroscopy in the infrared. After verified the high encapsulation efficiency (EE) for acid bicinconínico method (BCA) protein assay and the particle size distribution, the success of the technique was proven and the potential for in vivo application of nanoparticles. The experimental animals were vaccinated and the antibodies measured by ELISA
Resumo:
The benznidazole (BNZ) is the only alternative for Chagas disease treatment in Brazil. This drug has low solubility, which restricts its dissolution rate. Thus, the present work aimed to study the BNZ interactions in binary systems with beta cyclodextrin (β-CD) and hydroxypropyl-beta cyclodextrin (HP-β-CD), in order to increase the apparent aqueous solubility of drug. The influence of seven hydrophilic polymers, triethanolamine (TEA) and 1-methyl-2- pyrrolidone (NMP) in benznidazole apparent aqueous solubility, as well as the formation of inclusion complexes was also investigated. The interactions in solution were predicted and investigated using phase solubility diagram methodology, nuclear magnetic resonance of protons (RMN) and molecular modeling. Complexes were obtained in solid phase by spray drying and physicochemical characterization included the UV-Vis spectrophotometric spectroscopy in the infrared region, scanning electron microscopy, X-ray diffraction and dissolution drug test from the different systems. The increment on apparent aqueous solubility of drug was achieved with a linear type (AL) in presence of both cyclodextrins at different pH values. The hydrophilic polymers and 1-methyl-2-pyrrolidone contributes to the formation of inclusion complexes, while the triethanolamine decreased the complex stability constant (Kc). The log-linear model applied for solubility diagrams revealed that both triethanolamine and 1-methyl-2-pyrrolidone showed an action cosolvent (both solvents) and complexing (1-methyl-2-pyrrolidone). The best results were obtained with complexes involving 1-methyl-2-pyrrolidone and hydroxypropylbeta- cyclodextrin, with an increased of benznidazole solubility in 27.9 and 9.4 times, respectively. The complexes effectiveness was proven by dissolution tests, in which the ternary complexes and physical mixtures involving 1-methyl- 2-pyrrolidone and both cyclodextrins investigated showed better results, showing the potential use as novel pharmaceutical ingredient, that leads to increased benznidazole bioavailability
Resumo:
Natural oils have shown a scientific importance due to its pharmacological activity and renewable character. The copaiba (Copaifera langsdorffii) and Bullfrog (Rana catesbeiana Shaw) oils are used in folk medicine particularly because the anti-inflammatory and antimicrobial activities. Emulsion could be eligible systems to improve the palatability and fragrance, enhance the pharmacological activities and reduce the toxicological effects of these oils. The aim of this work was to investigate the antimicrobial activity of emulsions based on copaiba (resin-oil and essential-oil) and bullfrog oils against fungi and bacteria which cause skin diseases. Firstly, the essential oil was extracted from copaiba oil-resin and the oils were characterized by gas chromatography coupled to a mass spectrometry (GC-MS). Secondly, emulsion systems were produced. A microbiological screening test with all products was performed followed (the minimum inhibitory concentration, the bioautography method and the antibiofilm determination). Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Candida albicans, C. parapsilosis, C. glabrata, C. krusei and C. tropicalis American Type Culture Collection (ATCC) and clinical samples were used. The emulsions based on copaiba oil-resin and essential oil improved the antimicrobial activity of the pure oils, especially against Staphylococcus e Candida resistant to azoles. The bullfrog oil emulsion and the pure bullfrog oil showed a lower effect on the microorganisms when compared to the copaiba samples. All the emulsions showed a significant antibiofilm activity by inhibiting the cell adhesion. Thus, it may be concluded that emulsions based on copaiba and bullfrog oils are promising candidates to treatment of fungal and bacterial skin infections
Resumo:
Clays are natural materials that have great potential for use as excipients for solid dosage forms. Palygorskite is a type of clay that has hydrophilic properties as well as a large surface area, which could contribute to the dissolution of drugs. Thus, the present study aims to evaluate the use of palygorskite clay, from Piaui (Northeast region of Brazil), as a pharmaceutical excipient for solid dosage forms, using rifampicin and isoniazid as the model drugs. The former is a poorly soluble drug often associated with isoniazid for tuberculosis treatment. Palygorskite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and specific surface area (BET). The rheological and technological properties of palygorskite were determined and compared to those of talc, magnesium stearate and Aersosil 200. Mixtures between drugs and palygorskite were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) combined with thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FT-IR), where the results were compared with those of the individual compounds. In addition, dissolution studies of solid dispersions and capsules containing the drugs, mixed with either palygorskite or a mixture of talc and magnesium stearate, were performed. The results showed that palygorskite has small particles with a high surface area. Its rheological characteristics were better than those of others commonly used glidants and lubricants. There was no interaction between palygorskite and the drugs (rifampicin and isoniazid). Among the dispersions studied, the mixture with palygorskite (5%) showed the highest drug dissolution when compared to other excipients. The dissolution of the rifampicin capsules containing palygosrkite was faster in higher concentrations. However, these differences were statistically different only in the first minutes of the dissolution experiment. The dissolution profile of isoniazid was also statistically different on the initial part of the experiment. The formulations prepared with isoniazid and palygorskite showed higher drug dissolution, but it was in descending order of concentration. According to these results, the palygorskite clay used in this study has great potential for application as an excipient for solid dosage forms
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
O objetivo do presente trabalho foi o de estudar a resistência à corrosão em placas de aço inoxidável 316L, com diferentes tipos de acabamento e tratamento superficial, e a possível interferência dessa reação corrosiva na consolidação óssea. Utilizaram-se placas semi-acabadas, polidas, tratadas com jatos de microesferas de vidro e passivadas, as quais foram aplicadas na epífise distal do rádio de cães. Foram utilizados 12 animais, divididos em dois grupos, nos quais, após osteotomia bilateral do rádio e ulna, foram realizadas osteossínteses do rádio, totalizando 24 procedimentos. Avaliou-se a evolução clínica e radiográfica das regiões que receberam os implantes aos 30, 60, 90, 180, 240 e 360 dias. Os animais do grupo 1 (GI) foram sacrificados aos 180 dias e os do GII aos 360 dias para estudo histológico e de microscopia eletrônica de varredura do local da osteotomia sob a região dos implantes metálicos e para estudo da resistência à corrosão no organismo, pelos implantes metálicos, por meio de análises química e metalográfica (microscopia óptica e eletrônica de varredura e espectroscopia de espalhamento de energia por raios X). Os animais recuperaram a função dos membros operados 24 horas após a cirurgia. Radiograficamente, verificou-se a consolidação óssea em todos os animais. Macro e microscopicamente não foram observados sinais de corrosão nos implantes metálicos, exceto em uma placa passivada, aplicada no rádio esquerdo de um animal, na qual a corrosão foi detectada pela microscopia óptica e eletrônica de varredura. Este estudo permite concluir que as placas de aço inoxidável 316L, independente do acabamento superficial a que foram submetidas, não sofreram corrosão ou reações adversas e foram efetivas no tratamento das fraturas experimentais do rádio e ulna de cães.
Resumo:
This thesis aimed to assess the increase in solubility of simvastatin (SINV) with solid dispersions using techniques such as kneading (MA), co-solvent evaporation (ES), melting carrier (FC) and spray dryer (SD). Soluplus (SOL), PEG 6000 (PEG), PVP K-30 (PVP) e sodium lauryl sulphate (LSS) were used as carriers. The solid dispersions containing PEG [PEG-2(SD)], Soluplus [SOL-2(MA)] and sodium lauryl sulphate [LSS-2(ES)] were presented with a greater increase in solubility (5.02, 5.60 and 5.43 times respectively); analyses by ANOVA between the three groups did not present significant difference (p<0.05). In the phase solubility study, the calculation of the Gibbs free energy (ΔG) revealed that the spontaneity of solubilisation of SINV occurred in the order SOL>PEG >PVP 75%>LSS, always 80%. The phase diagrams of PEG and LSS presented solubilization stoichiometry of type 1:1 (type AL). The diagrams with PVP and SOL tend to 1:2 stoichiometry (type AL + AP). The stability coefficients (Ks) of the phase diagrams revealed that the most stable reactions occurred with LSS and PVP. The solid dispersions were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD), near-infrared spectroscopy imaging (NIR-CI) and X-ray diffraction of the powder using the Topas software (PDRX-TOPAS). The solid dispersion PEG-2(SD) presented the greatest homogeneity and the lowest degree of crystallinity (18.2%). The accelerated stability study revealed that the solid dispersions are less stable than SINV, with PEG-2(SD) being the least stable, confirmed by FTIR and DSC. The analyses by PDRX-TOPAS revealed the amorphous character of the dispersions and the mechanism of increasing solubility
Resumo:
The demographic growth press environments that are more susceptible to perturbations, like riparian areas, without knowing about the effects of replacing these natural environments by different land uses on soil quality and, consequently, on watershed. The study of soil quality has evolved as an important tool for soil sustainable management of this component of the biosphere that affects aquatic and terrestrial ecosystems functions. Thus, physical and chemical soil proprieties were measured to assess soil quality under different land uses (agricultural, pasture, urban, industrial and natural vegetation,) in the riparian zone of Extremoz Lake, an important human water source, evaluating whether the soil offers potential risk to water pollution. Data were subjected to descriptive statistics and Principal Component Analysis (PCA). The results showed negative changes in soil quality such as alkalinization and increase in P, Pb, Mn and Zn contents in most anthropized areas. The sandy texture and low organic matter content in all soils showed the fragility of the soil to erosion and leaching of elements in excess to water bodies, evidencing that this soils has potential to diffuse contaminants. Conservative management of soil is necessary to provide an adequate ecological state in riparian zones of the Extremoz Lake, thus allowing controlling and buffering diffuse sources of pollution to this important water supply source
Resumo:
O presente trabalho teve como objetivo verificar a forma de penetração do fungo Metarhizium anisopliae [METSCH. (SOROKIN, 1883)] em carrapatos da espécie Rhipicephalus sanguineus (LATREILLE, 1806), assim como as lesões infringidas nos tecidos internos do ácaro. A forma de aderência e penetração do fungo foi estudada através da microscopia eletrônica de varredura e a ação do fungo nos tecidos internos avaliada em secções histológicas convencionais. Para observação destes eventos, realizaram-se infecções experimentais em 11 grupos de fêmeas ingurgitadas do carrapato R. sanguineus contendo 12 fêmeas ingurgitadas cada. Para tal, as fêmeas ingurgitadas foram banhadas durante 3 minutos, sob agitação manual, em suspensão com concentração 108 conídios/mL. No caso dos grupos controle o banho foi realizado apenas no veículo da suspensão. Os carrapatos foram processados para histopatologia e microscopia eletrônica em diversos tempos após a infecção, a saber: 1 e 18h, e um, dois, três, quatro, cinco, seis, sete, nove e onze dias. Observou-se que a maior parte dos conídios germinou em até 18h após a inoculação e que o fungo penetrou no ácaro através do tegumento 48h após a infecção. Após a penetração, o fungo invadiu o corpo do hospedeiro promovendo uma colonização difusa, sem preferência aparente por tecidos específicos. Dentre as lesões nos tecidos internos do ácaro, ressalta-se o rompimento da parede intestinal e vazamento do conteúdo para a hemocele. A morte do hospedeiro ocorreu entre 96 e 120h pós-infecção, e a esporulação do patógeno sobre o cadáver do ácaro iniciou-se em torno de 120 a 144h pós-infecção. Espera-se, com este trabalho, contribuir para o desenvolvimento e viabilização de técnicas de controle biológico dos carrapatos por fungos como alternativa ao uso de acaricidas.
Resumo:
Examinaram-se a adesão, a germinação, a penetração e a colonização de larvas e ninfas de Rhipicephalus sanguineus por Metarhizium anisopliae, assim como as lesões infringidas pelo fungo nas respectivas fases do ciclo de vida do ácaro. Realizaram-se infecções experimentais em 11 grupos contendo 250 larvas e 11 grupos contendo 75 ninfas de R. sanguineus, por meio de banho, durante três minutos sob agitação manual, em suspensão contendo 10(8) conídios/ml do fungo. Nos grupos-controles, o banho foi realizado usando o veículo da suspensão. Larvas e ninfas foram processadas para um estudo histopatológico e de microscopia eletrônica de varredura nos seguintes tempos após a infecção: uma e 18 horas, e um, dois, três, quatro, cinco, seis, sete, nove e 11 dias. A germinação dos conídios ocorreu em até 18 horas pós-inoculação, e o fungo penetrou nas larvas e ninfas através do tegumento, dois e três dias após a infecção, respectivamente. Após penetração, o fungo invadiu o corpo das larvas e ninfas, promovendo uma colonização difusa, sem preferência aparente por tecidos específicos. Lesões significativas não foram observadas. A morte das larvas e ninfas ocorreu no terceiro e quarto dias pós-infecção, e a esporulação do patógeno sobre o cadáver foi iniciada no sexto dia pós-infecção.
Resumo:
Avaliou-se a evolução anual das componentes global, direta e difusa da radiação solar incidente em superfícies inclinadas a 12,85; 22,85 e 32,85º, com face voltada ao Norte, em Botucatu-SP. Foram obtidas frações radiométricas para cada componente da radiação nas superfícies supracitadas, através de razões com a radiação global e a do topo da atmosfera. A sazonalidade foi avaliada através das médias mensais dos valores diários. As medidas ocorreram entre 04/1998 e 07/2001, em 22,85º; 08/2001 e 02/2003, em 12,85º; e de 03/2003 a 12/2007, em 32,85º, com medidas concomitantes no plano horizontal (referência). Os níveis das radiações global e direta nos planos inclinados foram inferiores no período de verão e superiores entre os equinócios, quando comparadas ao plano horizontal. A radiação difusa nas superfícies inclinadas foi inferior na maioria dos meses, com perdas de até 65%. Ocorreu uma tendência de aumento das diferenças entre as superfícies horizontal e inclinada com o incremento do ângulo em todas as componentes e frações da radiação incidente. A evolução anual das precipitações pluviométricas e da razão de nebulosidade afetou diretamente a transmissividade atmosférica das componentes direta e difusa na região.
Resumo:
In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.
Resumo:
Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load