801 resultados para Critical mathematics education
Resumo:
presente trabalho tem por finalidade refletir a educação matemática inserida em um momento em que emerge um novo paradigma que valoriza uma educação transdisciplinar. Tem como foco o educando em todos os seus aspectos: corporal, emocional, racional e espiritual. Partindo do princípio que se vive em um mundo globalizado, onde as informações processam-se no dia-a-dia com mais velocidade e que um dos responsáveis, por este acúmulo de informações, o computador, valoriza-se neste estudo esta tecnologia como estratégia para uma educação inovadora na aprendizagem matemática. Pesquisando-se a real necessidade, por parte dos alunos, em utilizar a informática dentro do ambiente escolar, questionase o fundamento da dificuldade e/ou resistência de educadores de uma escola pública da rede estadual do Estado de São Paulo em utilizar estas inovações tecnológicas, efetivamente o computador, como ferramenta importante na busca de uma educação significativa.(AU)
Resumo:
This study seeks to demonstrate how critical discourse analysis can elucidate the relationship between language and peace. It provides a view on the notion of peace put forward by peace researchers, namely that peace includes not only the absence of war or physical violence, but also the absence of structural violence. Approaching the topic from various perspectives, the volume argues that language is a factor to be considered together with social and economic factors in any examination of the social conditions and institutions that prevent the achievement of a comprehensive peace. It illustrates a framework of concepts and methodologies that offer to help guide future linguistic research in this area, and also calls for foreign language, second language and peace educators to include critical linguistic education into their curricula and describes an approach for doing so.
Resumo:
On the basis of topical investigations on the reflection in the mathematics education, in this article there are presented some contemporary ideas about refining the methodology of mastering knowledge and skills for solving mathematical problems. The thesis is developed that for the general logical and for some particular mathematical methods to become means of solving mathematical problems, first they need to be a purpose of the education.
Resumo:
Ironically, the “learning of percent” is one of the most problematic aspects of school mathematics. In our view, these difficulties are not associated with the arithmetic aspects of the “percent problems”, but mostly with two methodological issues: firstly, providing students with a simple and accurate understanding of the rationale behind the use of percent, and secondly - overcoming the psychological complexities of the fluent and comprehensive understanding by the students of the sometimes specific wordings of “percent problems”. Before we talk about percent, it is necessary to acquaint students with a much more fundamental and important (regrettably, not covered by the school syllabus) classical concepts of quantitative and qualitative comparison of values, to give students the opportunity to learn the relevant standard terminology and become accustomed to conventional turns of speech. Further, it makes sense to briefly touch on the issue (important in its own right) of different representations of numbers. Percent is just one of the technical, but common forms of data representation: p% = p × % = p × 0.01 = p × 1/100 = p/100 = p × 10-2 "Percent problems” are involved in just two cases: I. The ratio of a variation m to the standard M II. The relative deviation of a variation m from the standard M The hardest and most essential in each specific "percent problem” is not the routine arithmetic actions involved, but the ability to figure out, to clearly understand which of the variables involved in the problem instructions is the standard and which is the variation. And in the first place, this is what teachers need to patiently and persistently teach their students. As a matter of fact, most primary school pupils are not yet quite ready for the lexical specificity of “percent problems”. ....Math teachers should closely, hand in hand with their students, carry out a linguistic analysis of the wording of each problem ... Schoolchildren must firmly understand that a comparison of objects is only meaningful when we speak about properties which can be objectively expressed in terms of actual numerical characteristics. In our opinion, an adequate acquisition of the teaching unit on percent cannot be achieved in primary school due to objective psychological specificities related to this age and because of the level of general training of students. Yet, if we want to make this topic truly accessible and practically useful, it should be taught in high school. A final question to the reader (quickly, please): What is greater: % of e or e% of Pi
Resumo:
Petar Kenderov The paper considers the participation of the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences, into two European projects, InnoMathEd and Fibonacci. Both projects address substantial innovations in mathematics education and their dissemination on European level. Inquiry based learning is the central focus of the two projects. A special emphasis is paid on the outcomes of the projects in terms of didactic concepts, pedagogical methodologies and innovative learning environments aimed at pupils’ active, self-responsible and exploratory learning.
Resumo:
Mariana Katcarska, Margarita Todorova - The Didactic game in Mathematics Education is considered as a powerful tool for stimulating pupils to a cognitive activity, for raising the pupils’ interest in mathematics as a science and, in result of this, for easier acquisition of the educational contents. A particular application is also examined.
Resumo:
Current reform initiatives recommend that geometry instruction include the study of three-dimensional geometric objects and provide students with opportunities to use spatial skills in problem-solving tasks. Geometer's Sketchpad (GSP) is a dynamic and interactive computer program that enables the user to investigate and explore geometric concepts and manipulate geometric structures. Research using GSP as an instructional tool has focused primarily on teaching and learning two-dimensional geometry. This study explored the effect of a GSP based instructional environment on students' geometric thinking and three-dimensional spatial ability as they used GSP to learn three-dimensional geometry. For 10 weeks, 18 tenth-grade students from an urban school district used GSP to construct and analyze dynamic, two-dimensional representations of three-dimensional objects in a classroom environment that encouraged exploration, discussion, conjecture, and verification. The data were collected primarily from participant observations and clinical interviews and analyzed using qualitative methods of analysis. In addition, pretest and posttest measures of three-dimensional spatial ability and van Hiele level of geometric thinking were obtained. Spatial ability measures were analyzed using standard t-test analysis. ^ The data from this study indicate that GSP is a viable tool to teach students about three-dimensional geometric objects. A comparison of students' pretest and posttest van Hiele levels showed an improvement in geometric thinking, especially for students on lower levels of the van Hiele theory. Evidence at the p < .05 level indicated that students' spatial ability improved significantly. Specifically, the GSP dynamic, visual environment supported students' visualization and reasoning processes as students attempted to solve challenging tasks about three-dimensional geometric objects. The GSP instructional activities also provided students with an experiential base and an intuitive understanding about three-dimensional objects from which more formal work in geometry could be pursued. This study demonstrates that by designing appropriate GSP based instructional environments, it is possible to help students improve their spatial skills, develop more coherent and accurate intuitions about three-dimensional geometric objects, and progress through the levels of geometric thinking proposed by van Hiele. ^
Resumo:
The purpose of this dissertation was to examine the effect of academic integration, defined in terms of instructor/student contact, on the persistence of under-prepared college students and the achievement of those who persist. The overall design of this study compared instructor-initiated contact with conventional contact. The dependent variables were persistence, achievement, motivation and anxiety. Information was collected by administering the College-Level Mathematics Test (CLM), the Perceived Affective Contact Questionnaire (PAC), the expectancy and anxiety components of the Motivated Strategies for Learning Questionnaire (MSLQ), a departmental final examination, and by accessing university records. The sample consisted of 130 college algebra students at a large, public university with a Hispanic majority. The main analyses consisted of a 2 x 2 x 2 ANOVA (treatment by ethnicity by gender) to test for differences in achievement, t-tests to compare motivation, anxiety and perceived affective contact scores for the two groups, Chi-square tests to assess differences in persistence, and Pearson Product-Moment Correlation to determine the relationship between pretest scores and achievement variables. Results indicated that neither instructor-initiated contact, gender nor ethnicity is related to persistence, motivation or anxiety. A significant disordinal interaction of treatment and ethnicity was observed, with Hispanic experimental students scoring significantly higher on a test of algebra achievement than Hispanic control students. ^ Academic integration, defined in terms of instructor/student contact, has a positive influence on the achievement of Hispanic students. This may imply their positive responsiveness to the relational aspect of contact due to traditional cultural values of interdependence, acquiescence to authority and physical closeness. Such interactive feedback is a means by which students with these values are recognized as members of the university academic community, prompting increased academic effort. Training in contact initiation to promote academic integration is implied, by the results of this study, for instructors dealing with first year students, especially instructors at institutions accommodating instructional methods to the needs of diverse groups. ^
Resumo:
Success in mathematics has been identified as a predictor of baccalaureate degree completion. Within the coursework of college mathematics, College Algebra has been identified as a high-risk course due to its low success rates. ^ Research in the field of attribution theory and academic achievement suggests a relationship between a student's attributional style and achievement. Theorists and researchers contend that attributions influence individual reactions to success and failure. They also report that individuals use attributions to explain and justify their performance. Studies in mathematics education identify attribution theory as the theoretical orientation most suited to explain academic performance in mathematics. This study focused on the relationship among a high risk course, low success rates, and attribution by examining the difference in the attributions passing and failing students gave for their performance in College Algebra. ^ The methods for the study included a pilot administration of the Causal Dimension Scale (CDSII) which was used to conduct reliability and principal component analyses. Then, students (n = 410) self-reported their performance on an in-class test and attributed their performance along the dimensions of locus of causality, stability, personal controllability, and external controllability. They also provided open-ended attribution statements to explain the cause of their performance. The quantitative data compared the passing and failing groups and their attributions for performance on a test using One-Way ANOVA and Pearson chi square procedures. The open-ended attribution statements were coded in relation to ability, effort, task difficulty, and luck and compared using a Pearson chi square procedure. ^ The results of the quantitative data comparing passing and failing groups and their attributions along the dimensions measured by the CDSII indicated statistical significance in locus of causality, stability, and personal controllability. The results comparing the open-ended attribution statements indicated statistical significance in the categories of effort and task difficulty. ^
Resumo:
Math storybooks are picture books in which the understanding of mathematical concepts is central to the comprehension of the story. Math stories have provided useful opportunities for children to expand their skills in the language arts area and to talk about mathematical factors that are related to their real lives. The purpose of this study was to examine bilingual children's reading and math comprehension of the math storybooks. ^ The participants were randomly selected from two Korean schools and two public elementary schools in Miami, Florida. The sample consisted of 63 Hispanic American and 43 Korean American children from ages five to seven. A 2 x 3 x (2) mixed-model design with two between- and one within-subjects variable was used to conduct this study. The two between-subjects variables were ethnicity and age, and the within-subjects variable was the subject area of comprehension. Subjects were read the three math stories individually, and then they were asked questions related to reading and math comprehension. ^ The overall ANOVA using multivariate tests was conducted to evaluate the factor of subject area for age and ethnicity. As follow-up tests for a significant main effect and a significant interaction effect, pairwise comparisons and simple main effect tests were conducted, respectively. ^ The results showed that there were significant ethnicity and age differences in total comprehension scores. There were also age differences in reading and math comprehension, but no significant differences were found in reading and math by ethnicity. Korean American children had higher scores in total comprehension than those of Hispanic American children, and they showed greater changes in their comprehension skills at the younger ages, from five to six, whereas Hispanic American children showed greater changes at the older ages, from six to seven. Children at ages five and six showed higher scores in reading than in math, but no significant differences between math and reading comprehension scores were found at age seven. ^ Through schooling with integrated instruction, young bilingual children can move into higher levels of abstraction and concepts. This study highlighted bilingual children's general nature of thinking and showed how they developed reading and mathematics comprehension in an integrated process. ^
Resumo:
Homework has been a controversial issue in education for the past century. Research has been scarce and has yielded results at both ends of the spectrum. This study examined the relationship between homework performance (percent of homework completed and percent of homework correct), student characteristics (SAT-9 score, gender, ethnicity, and socio-economic status), perceptions, and challenges and academic achievement determined by the students' average score on weekly tests and their score on the FCAT NRT mathematics assessment. ^ The subjects for this study consisted of 143 students enrolled in Grade 3 at a suburban elementary school in Miami, Florida. Pearson's correlations were used to examine the associations of the predictor variables with average test scores and FCAT NRT scores. Additionally, simultaneous regression analyses were carried out to examine the influence of the predictor variables on each of the criterion variables. Hierarchical regression analyses were performed on the criterion variables from the predictor variables. ^ Homework performance was significantly correlated with average test score. Controlling for the other variables homework performance was highly related to average test score and FCAT NRT score. ^ This study lends support to the view that homework completion is highly related to student academic achievement at the lower elementary level. It is suggested that at the elementary level more consideration be given to the amount of homework completed by students and to utilize the information in formulating intervention strategies for student who may not be achieving at the appropriate levels. ^
Resumo:
Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.