941 resultados para Classical super-integrable field theory
Resumo:
We study magneto-optical properties of monolayer graphene by means of quantum field theory methods in the framework of the Dirac model. We reveal a good agreement between the Dirac model and a recent experiment on giant Faraday rotation in cyclotron resonance [23]. We also predict other regimes when the effects are well pronounced. The general dependence of the Faraday rotation and absorption on various parameters of samples is revealed both for suspended and epitaxial graphene.
Resumo:
Renyi and von Neumann entropies quantifying the amount of entanglement in ground states of critical spin chains are known to satisfy a universal law which is given by the conformal field theory (CFT) describing their scaling regime. This law can be generalized to excitations described by primary fields in CFT, as was done by Alcaraz et al in 2011 (see reference [1], of which this work is a completion). An alternative derivation is presented, together with numerical verifications of our results in different models belonging to the c = 1, 1/2 universality classes. Oscillations of the Renyi entropy in excited states are also discussed.
Resumo:
The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction w of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it is shown that w = 1/2, corresponding to an unbiased spin glass, is a singular point in the phase diagram, separating a region with a spin-glass phase (w < 1/2) from a region with spin-glass, ferromagnetic, mixed and paramagnetic phases (w > 1/2).
Resumo:
Solitons in the Skyrme-Faddeev model on R-2 x S-1 are shown to undergo buckling transitions as the circumference of the S-1 is varied. These results support a recent conjecture that solitons in this field theory are well-described by a much simpler model of elastic rods.
Resumo:
We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.
Resumo:
We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model.
Resumo:
We consider the Shannon mutual information of subsystems of critical quantum chains in their ground states. Our results indicate a universal leading behavior for large subsystem sizes. Moreover, as happens with the entanglement entropy, its finite-size behavior yields the conformal anomaly c of the underlying conformal field theory governing the long-distance physics of the quantum chain. We study analytically a chain of coupled harmonic oscillators and numerically the Q-state Potts models (Q = 2, 3, and 4), the XXZ quantum chain, and the spin-1 Fateev-Zamolodchikov model. The Shannon mutual information is a quantity easily computed, and our results indicate that for relatively small lattice sizes, its finite-size behavior already detects the universality class of quantum critical behavior.
Resumo:
We propose a new Skyrme-like model with fields taking values on the sphere S3 or, equivalently, on the group SU(2). The action of the model contains a quadratic kinetic term plus a quartic term which is the same as that of the Skyrme-Faddeev model. The novelty of the model is that it possess a first order Bogomolny type equation whose solutions automatically satisfy the second order Euler-Lagrange equations. It also possesses a lower bound on the static energy which is saturated by the Bogomolny solutions. Such Bogomolny equation is equivalent to the so-called force free equation used in plasma and solar Physics, and which possesses large classes of solutions. An old result due to Chandrasekhar prevents the existence of finite energy solutions for the force free equation on the entire three- dimensional space R3. We construct new exact finite energy solutions to the Bogomolny equations for the case where the space is the three-sphere S3, using toroidal like coordinates.
Resumo:
There is very strong evidence that ordinary matter in the Universe is outweighed by almost ten times as much so-called dark matter. Dark matter does neither emit nor absorb light and we do not know what it is. One of the theoretically favoured candidates is a so-called neutralino from the supersymmetric extension of the Standard Model of particle physics. A theoretical calculation of the expected cosmic neutralino density must include the so-called coannihilations. Coannihilations are particle processes in the early Universe with any two supersymmetric particles in the initial state and any two Standard Model particles in the final state. In this thesis we discuss the importance of these processes for the calculation of the relic density. We will go through some details in the calculation of coannihilations with one or two so-called sfermions in the initial state. This includes a discussion of Feynman diagrams with clashing arrows, a calculation of colour factors and a discussion of ghosts in non-Abelian field theory. Supersymmetric models contain a large number of free parameters on which the masses and couplings depend. The requirement, that the predicted density of cosmic neutralinos must agree with the density observed for the unknown dark matter, will constrain the parameters. Other constraints come from experiments which are not related to cosmology. For instance, the supersymmetric loop contribution to the rare b -> sγ decay should agree with the measured branching fraction. The principles of the calculation of the rare decay are discussed in this thesis. Also on-going and planned searches for cosmic neutralinos can constrain the parameters. In one of the accompanying papers in the thesis we compare the detection prospects for several current and future searches for neutralino dark matter.
Resumo:
Zusammmenfassung:Um Phasenseparation in binären Polymermischungen zuuntersuchen, werden zwei dynamische Erweiterungen der selbstkonsistenten Feldtheorie (SCFT)entwickelt. Die erste Methode benutzt eine zeitliche Entwicklung der Dichten und wird dynamische selbstkonsistente Feldtheorie (DSCFT) genannt, während die zweite Methode die zeitliche Propagation der effektiven äußeren Felder der SCFT ausnutzt. Diese Methode wird mit External Potential Dynamics (EPD) bezeichnet. Für DSCFT werden kinetische Koeffizienten verwendet, die entweder die lokale Dynamik von Punktteilchen oder die nichtlokale Dynamik von Rouse'schen Polymeren nachbilden. Die EPD-Methode erzeugt mit einem konstanten kinetischen Koeffizienten die Dynamik von Rouse'schen Ketten und benötigt weniger Rechenzeit als DSCFT. Diese Methoden werden für verschiedene Systeme angewendet.Zuerst wird spinodale Entmischung im Volumen untersucht,wobei der Unterschied zwischen lokaler und nichtlokalerDynamik im Mittelpunkt steht. Um die Gültigkeit derErgebnisse zu überprüfen, werden Monte-Carlo-Simulationen durchgeführt. In Polymermischungen, die von zwei Wänden, die beide die gleiche Sorte Polymere bevorzugen, eingeschränkt werden, wird die Bildung von Anreicherungsschichten an den Wänden untersucht. Für dünne Polymerfilme zwischen antisymmetrischen Wänden, d.h. jede Wand bevorzugt eine andere Polymerspezies, wird die Spannung einer parallel zu den Wänden gebildeten Grenzfläche analysiert und der Phasenübergang von einer anfänglich homogenen Mischung zur lokalisierten Phase betrachtet. Des Weiteren wird die Dynamik von Kapillarwellenmoden untersucht.
Resumo:
Diese Arbeit beschäftigt sich mit Strukturbildung im schlechten Lösungsmittel bei ein- und zweikomponentigen Polymerbürsten, bei denen Polymerketten durch Pfropfung am Substrat verankert sind. Solche Systeme zeigen laterale Strukturbildungen, aus denen sich interessante Anwendungen ergeben. Die Bewegung der Polymere erfolgt durch Monte Carlo-Simulationen im Kontinuum, die auf CBMC-Algorithmen sowie lokalen Monomerverschiebungen basieren. Eine neu entwickelte Variante des CBMC-Algorithmus erlaubt die Bewegung innerer Kettenteile, da der bisherige Algorithmus die Monomere in Nähe des Pfropfmonomers nicht gut relaxiert. Zur Untersuchung des Phasenverhaltens werden mehrere Analysemethoden entwickelt und angepasst: Dazu gehören die Minkowski-Maße zur Strukturuntersuchung binären Bürsten und die Pfropfkorrelationen zur Untersuchung des Einflusses von Pfropfmustern. Bei einkomponentigen Bürsten tritt die Strukturbildung nur beim schwach gepfropften System auf, dichte Pfropfungen führen zu geschlossenen Bürsten ohne laterale Struktur. Für den graduellen Übergang zwischen geschlossener und aufgerissener Bürste wird ein Temperaturbereich bestimmt, in dem der Übergang stattfindet. Der Einfluss des Pfropfmusters (Störung der Ausbildung einer langreichweitigen Ordnung) auf die Bürstenkonfiguration wird mit den Pfropfkorrelationen ausgewertet. Bei unregelmäßiger Pfropfung sind die gebildeten Strukturen größer als bei regelmäßiger Pfropfung und auch stabiler gegen höhere Temperaturen. Bei binären Systemen bilden sich Strukturen auch bei dichter Pfropfung aus. Zu den Parametern Temperatur, Pfropfdichte und Pfropfmuster kommt die Zusammensetzung der beiden Komponenten hinzu. So sind weitere Strukturen möglich, bei gleicher Häufigkeit der beiden Komponenten bilden sich streifenförmige, lamellare Muster, bei ungleicher Häufigkeit formt die Minoritätskomponente Cluster, die in der Majoritätskomponente eingebettet sind. Selbst bei gleichmäßig gepfropften Systemen bildet sich keine langreichweitige Ordnung aus. Auch bei binären Bürsten hat das Pfropfmuster großen Einfluss auf die Strukturbildung. Unregelmäßige Pfropfmuster führen schon bei höheren Temperaturen zur Trennung der Komponenten, die gebildeten Strukturen sind aber ungleichmäßiger und etwas größer als bei gleichmäßig gepfropften Systemen. Im Gegensatz zur self consistent field-Theorie berücksichtigen die Simulationen Fluktuationen in der Pfropfung und zeigen daher bessere Übereinstimmungen mit dem Experiment.
Resumo:
Die Arbeit beginnt mit dem Vergleich spezieller Regularisierungsmethoden in der Quantenfeldtheorie mit dem Verfahren zur störungstheoretischen Konstruktion der S-Matrix nach Epstein und Glaser. Da das Epstein-Glaser-Verfahren selbst als Regularisierungsverfahren verwandt werden kann und darüberhinaus ausschließlich auf physikalisch motivierten Postulaten basiert, liefert dieser Vergleich ein Kriterium für die Zulässigkeit anderer Regularisierungsmethoden. Zusätzlich zur Herausstellung dieser Zulässigkeit resultiert aus dieser Gegenüberstellung als weiteres wesentliches Resultat ein neues, in der Anwendung praktikables sowie konsistentes Regularisierungsverfahren, das modifizierte BPHZ-Verfahren. Dieses wird anhand von Ein-Schleifen-Diagrammen aus der QED (Elektronselbstenergie, Vakuumpolarisation und Vertexkorrektur) demonstriert. Im Gegensatz zur vielverwandten Dimensionalen Regularisierung ist dieses Verfahren uneingeschränkt auch für chirale Theorien anwendbar. Als Beispiel hierfür dient die Berechnung der im Rahmen einer axialen Erweiterung der QED-Lagrangedichte auftretenden U(1)-Anomalie. Auf der Stufe von Mehr-Schleifen-Diagrammen zeigt der Vergleich der Epstein-Glaser-Konstruktion mit dem bekannten BPHZ-Verfahren an mehreren Beispielen aus der Phi^4-Theorie, darunter das sog. Sunrise-Diagramm, daß zu deren Berechnung die nach der Waldformel des BPHZ-Verfahrens zur Regularisierung beitragenden Unterdiagramme auf eine kleinere Klasse eingeschränkt werden können. Dieses Resultat ist gleichfalls für die Praxis der Regularisierung bedeutsam, da es bereits auf der Stufe der zu berücksichtigenden Unterdiagramme zu einer Vereinfachung führt.
Resumo:
Skalenargumente werden verwendet, um Rod-Coil Copolymere mit fester Zusammensetzung von steifen Stäbchen und flexiblen Ketten zu studieren. In einem selektiven Lösungsmittel, in dem sich nur die Ketten lösen, bildet ein Rod-Coil Multiblock zylinderförmige Micellen aus aggregierten Stäbchen verbunden durch Kettenstücke. Die Stäbchen aggregieren, um Energie zu gewinnen. Dieser Prozeß wird durch den Entropieverlust der flexiblen Ketten ausgeglichen. Das Adsorptionsverhalten von Aggregaten aus parallel aneinandergelagerten, einzelnen Rod-Coil Diblöcken in selektivem Lösungsmittel wird anhand von erweiterten Skalenbetrachtungen diskutiert. Wenn ein solches Aggregat mit den Stäbchen parallel zur Oberfläche adsorbiert, verschieben sich die Stäbchen gegeneinander. Zusätzlich werden die Stabilität der adsorbierten Aggregate und andere mögliche Konfigurationen untersucht. Um einen Rod-Coil Multiblock mit variabler Zusammensetzung zu studieren, wird eine Feldtheorie entwickelt. Jedes Segment kann entweder steif oder flexibel sein. Das System zeigt drei Phasenzustände, offene Kette, amorphe Globule und flüssig-kristalline Globule. Beim Übergang von amorpher zu flüssig-kristalliner Globule steigt der Anteil an steifen Segmenten rapide an. Dieser Übergang wird durch die isotrope Wechselwirkung zwischen den steifen Segmenten und die anisotrope Oberflächenenergie der Globule verursacht.
Resumo:
In this thesis we consider three different models for strongly correlated electrons, namely a multi-band Hubbard model as well as the spinless Falicov-Kimball model, both with a semi-elliptical density of states in the limit of infinite dimensions d, and the attractive Hubbard model on a square lattice in d=2.
In the first part, we study a two-band Hubbard model with unequal bandwidths and anisotropic Hund's rule coupling (J_z-model) in the limit of infinite dimensions within the dynamical mean-field theory (DMFT). Here, the DMFT impurity problem is solved with the use of quantum Monte Carlo (QMC) simulations. Our main result is that the J_z-model describes the occurrence of an orbital-selective Mott transition (OSMT), in contrast to earlier findings. We investigate the model with a high-precision DMFT algorithm, which was developed as part of this thesis and which supplements QMC with a high-frequency expansion of the self-energy.
The main advantage of this scheme is the extraordinary accuracy of the numerical solutions, which can be obtained already with moderate computational effort, so that studies of multi-orbital systems within the DMFT+QMC are strongly improved. We also found that a suitably defined
Falicov-Kimball (FK) model exhibits an OSMT, revealing the close connection of the Falicov-Kimball physics to the J_z-model in the OSM phase.
In the second part of this thesis we study the attractive Hubbard model in two spatial dimensions within second-order self-consistent perturbation theory.
This model is considered on a square lattice at finite doping and at low temperatures. Our main result is that the predictions of first-order perturbation theory (Hartree-Fock approximation) are renormalized by a factor of the order of unity even at arbitrarily weak interaction (U->0). The renormalization factor q can be evaluated as a function of the filling n for 0
Resumo:
The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.