896 resultados para <2 cm
Resumo:
Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3– 19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8– 144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.
Resumo:
The maturity of the undulate ray, Raja undulata, one of the most important by-catch elasmobranch species captured in south Portugal, was studied for the first time. Females ranged in total length (TL) from 19.4 to 88.2 cm and males from 23.0 to 83.2 cm. The gonadosomatic index for females was higher during the winter, meaning that this species reproduces during this season. Females matured at significantly larger sizes and older ages than males, with 50% of the females mature at 76.2 cm TL at an age of 8.98 years while 50% maturity for males was achieved at 73.6 cm TL and 7.66 years. Females were mature at 86.3% of the maximum observed size and 69.1% of the maximum observed age while males matured at 88.5% of the maximum observed size and 63.8% of the maximum observed age, making this a very late maturing species, with important consequences in terms of fisheries management and conservation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Objetivo: Determinar la distribución por percentiles de salto con contramovimiento (CMJ) en una población escolar de Bogotá, Colombia, perteneciente al estudio Fuprecol. Métodos: Estudio transversal realizado entre 2846 niños y 2754 adolescentes, entre 9 a 17 años de edad, pertenecientes a 18 instituciones educativas oficiales de Bogotá, Colombia. Se evaluó el CMJ, de acuerdo, con lo establecido por la batería de condición física, Fuprecol. Se calcularon, los percentiles (P3, P10, P25, P50, P75, P90 y P97), y curvas centiles por el método LMS, según su sexo y edad. Se realizó una comparación entre los valores de la CMJ observados con estándares internacionales. Resultados: La muestra estuvo constituida por 5.600 niños y adolescentes entre 9 y 17 años; el promedio de edad fue 12,6 ± 2,4 años. En el CMJ, los valores altos, los obtuvieron los niños, franja en la que la media osciló entre 25,1 cm a los 9 años, y 38,6 cm a los 17; para las niñas, la media fluctuó entre 23,2 cm a los 9 años, y 28,6 a los 17; en ambos sexos esos valores aumentan proporcional a la edad. Conclusiones: Se registran percentiles del CMJ de acuerdo con la edad y el sexo, que podrán ser usados como referencia en la evaluación del salto vertical desde edades tempranas.
Resumo:
Los cálculos vesicales son los más frecuentes del tracto urinario bajo (1). El factor predisponente más frecuente para la formación de cálculos vesicales es la obstrucción del tracto de salida. Presentaremos el caso de una paciente con antecedente de trauma uretral por fractura de pelvis; derivada con un Mitrofanoff; con diagnostico de cistolitiasis múltiple con cálculos de hasta 1 cm. El objetivo es mostrar la posibilidad de manejo de la cistolitiasis vía percutánea en una paciente con una derivación urinaria compleja funcionante, procedimiento menos mórbido, con menor tiempo de recuperación y con resultados comparables a otras técnicas. Inicia el procedimiento previa cateterización del Mitrofanoff con sonda Foley 12Fr, realizando punción suprapúbica para mediana izquierda a 2 cm de la rama púbica con aguja Chiba, posteriormente se avanzó guía hidrofílica seguida de varilla y dilatadores secuenciales de Alken 9Fr-27Fr y colocación de camisa Amplatz 28 Fr. Se retiraron dilatadores conservando guía de seguridad, se extrajeron la totalidad de los cálculos. Se ocluyó herida y se dejó sonda Foley conectada a Cystoflo. Egreso al día 1 post operatorio y retiro sonda Foley a los 5 días post operatorio. No se presentaron complicaciones, el tiempo operatorio fue de 1 hora, con 1 día de estancia hospitalaria. Recuperación satisfactoria con un resultado exitoso en cuanto a la extracción completa de los cálculos en 1 sólo tiempo quirúrgico. La cistolitotomía percutánea es una opción de manejo la cual ofrece grandes ventajas. Debe ser considerada no sólo en pacientes con acceso uretral restringido.
Resumo:
Nitrogen requirements at bulb initiation for production of intermediate-day onions Article in Acta horticulturae · October 2016 DOI: 10.17660/ActaHortic.2016.1142.11 1st Rui Machado 16.44 · Universidade de Évora 2nd David R. Bryla 30.16 · United States Department of Agriculture Abstract Nitrogen requirements at bulb initiation for production of intermediate-day onions Authors: R.M.A. Machado, D.R. Bryla Keywords: Allium cepa, crop growth, nitrogen uptake, soil nitrate Abstract: The effect of nitrogen application on growth, nitrogen (N) uptake, yield, and quality of intermediate-day onion (Allium cepa 'Guimar') was evaluated in the field in southern Portugal. Plants were fertilized with 30 kg ha-1 N at transplanting, 10 kg ha-1 N at 29 days after transplanting (DAT) during early leaf growth, and with 0, 20, 40 and 60 kg ha-1 N at 51 DAT at the initiation of bulbing. The root system of plants in each treatment were concentrated in the top 0.1 m of soil and limited to 0.3 m depth but neither root length density nor rooting depth were affected by N application during later stages of bulb development. Leaf and bulb dry matter, on the other hand, increased linearly with N rate during bulb growth (85 DAT) and at harvest (114 DAT), respectively. Soil nitrate-N (NO3-N) at 0-0.3 m depth likewise increased linearly with N rate during bulb growth but declined from 15-30 mg kg-1 at bulbing to >10 mg kg-1 in each treatment by harvest. A substantial amount of N in the plants, which ranged from 302-525 mg, was taken up from the soil. Application of 60 kg ha-1 N resulted in luxury consumption. Yield (fresh bulb weight) increased from 0.19 kg plant-1 with no N at bulbing to as much as 0.28 kg plant-1 with 60 kg ha-1 N. Bulbs harvested from plants fertilized 40-60 kg ha-1 N averaged 8.2-8.5 cm in diameter, while those from plants with no N at bulbing averaged only 7.2 cm in diameter. Application of N fertilizer is thus recommended at bulbing to increase N uptake, yield, and bulb size of intermediate-day onions, particularly in dry Mediterranean climates where many onions are produced. Other components of quality, including neck diameter, bulb water content, total soluble solids, and juice pH, were not affect by N applied at bulbing.
Resumo:
Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Current-based microscopic defect analysis methods with optical filling techniques, namely current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC), have been used to study defect levels in a high resistivity silicon detector (p(+)-n-n(+)) induced by very high fluence neutron (VHFN) irradiation (1.7x10(15) n/cm(2)). As many as fourteen deep levels have been detected by I-DLTS. Arrhenius plots of the I-DLTS data have shown defects with energy levels ranging from 0.03 eV to 0.5 eV in the energy band gap. Defect concentrations of relatively shallow levels (E(t) < 0.33 eV) are in the order of 10(13)cm(-3), while those for relatively deep levels (E(t) > 0.33 eV) are in the order of 10(14) cm(-3). TSC data have shown similar defect spectra. A full depletion voltage of about 27,000 volts has been estimated by C-V measurements for the as-irradiated detector, which corresponds to an effective space charge density (N-eff) in the order of 2x10(14) cm(-3). Both detector leakage current and full depletion voltage have been observed to increase with elevated temperature annealing (ETA). The increase of the full depletion voltage corresponds to the increase of some deep levels, especially the 0.39 eV level. Results of positron annihilation spectroscopy have shown a decrease of total concentration of vacancy related defects including vacancy clusters with ETA, suggesting the breaking up of vacancy clusters as possible source of vacancies for the formation of single defects during the reverse anneal.
Resumo:
Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In the past few years, the development of light sources of the 4(th) generation, namely XUV/X-ray Free Electron Lasers provides to the scientific community outstanding tools to investigate matter under extreme conditions never obtained in laboratories so far. As theory is at its infancy, the analysis of matter via the self-emission of the target is of central importance. The characterization of such dense matter is possible if photons can escape the medium. As the absorption of K-shell X-ray transitions is minimal, it plays a key role in this study. We report here the first successful observation of K-shell emission of Nitrogen at 430 eV using an XUV-Free Electron Laser to irradiate solid Boron Nitride targets under exceptional conditions: photon energy of 92 eV, pulse duration of similar to 20 fs, micro focusing leading to intensities larger than 10(16) W/cm(2). Using a Bragg crystal of THM coupled to a CCD, we resolved K-shell line emission from different charge states. We demonstrate that the spectroscopic data allow characterization of electron heating processes when X-ray radiation is interacting with solid matter. As energy transport is non-trivial because the light source is monochromatic, these results have an important impact on the theory. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Conditions for efficient and stable ion radiation pressure acceleration (RPA) from thin foils by circularly polarized laser pulses at moderate intensities are theoretically and numerically investigated. It is found that the unavoidable decompression of the co-moving electron layer in Light-Sail RPA leads to a change of the local electrostatic field from a
Resumo:
A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C6+ beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).
Resumo:
K-alpha x-ray emission, extreme ultraviolet emission, and plasma imaging techniques have been used to diagnose energy transport patterns in copper foils ranging in thickness from 5 to 75 mu m for intensities up to 5x10(20) Wcm(-20). The K-alpha emission and shadowgrams both indicate a larger divergence angle than that reported in the literature at lower intensities [R. Stephens , Phys. Rev. E 69, 066414 (2004)]. Foils 5 mu m thick show triple-humped plasma expansion patterns at the back and front surfaces. Hybrid code modeling shows that this can be attributed to an increase in the mean energy of the fast electrons emitted at large radii, which only have sufficient energy to form a plasma in such thin targets.
Resumo:
Aluminium targets were irradiated with 92 eV radiation from FLASH Free Electron Laser at DESY at intensities up to 10(17)W/cm(2) by focussing the beam on target down to a spot size of similar to 1 mu m by means of a parabolic mirror. High resolution XUV spectroscopy was used to identify aluminium emission from complex hole-states. Simulations carried out with the MARIA code show that the emission characterizes the electron heating in the transition phase solid-atomic. The analysis allows constructing a simple model of electron heating via Auger electrons.