903 resultados para Modeling and Simulation
Resumo:
The experiments observe and measure the length of the annular regime in fully condensing quasi-steady (steady-in-the-mean) flows of pure FC-72 vapor in a horizontal condenser (rectangular cross-section of 2 mm height, 15 mm width, and 1 m length). The sides and top of the duct are made of clear plastic that allows flow visualization. The experimental system in which this condenser is used is able to control and achieve different quasi-steady mass flow rates, inlet pressures, and wall cooling conditions (by adjustment of the temperature and flow rate of the cooling water flowing underneath the condensing-plate). The reported correlations and measurements for the annular length are also vital information for determining the length of the annular regime and proposing extended correlation (covering many vapors and a larger parameter set than the experimentally reported version here) by ongoing independent modeling and computational simulation approach.
Resumo:
Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.
Resumo:
This document corresponds to the tutorial on realistic neural modeling given by David Beeman at WAM-BAMM*05, the first annual meeting of the World Association of Modelers (WAM) Biologically Accurate Modeling Meeting (BAMM) on March 31, 2005 in San Antonio, TX. Part I - Introduction to Realistic Neural Modeling for the Beginner: This is a general overview and introduction to compartmental cell modeling and realistic network simulation for the beginner. Although examples are drawn from GENESIS simulations, the tutorial emphasizes the general modeling approach, rather than the details of using any particular simulator. Part II - Getting Started with Modeling Using GENESIS: This builds upon the background of Part I to describe some details of how this approach is used to construct cell and network simulations in GENESIS. It serves as an introduction and roadmap to the extended hands-on GENESIS Modeling Tutorial.
Resumo:
When observers are presented with two visual targets appearing in the same position in close temporal proximity, a marked reduction in detection performance of the second target has often been reported, the so-called attentional blink phenomenon. Several studies found a similar decrement of P300 amplitudes during the attentional blink period as observed with detection performances of the second target. However, whether the parallel courses of second target performances and corresponding P300 amplitudes resulted from the same underlying mechanisms remained unclear. The aim of our study was therefore to investigate whether the mechanisms underlying the AB can be assessed by fixed-links modeling and whether this kind of assessment would reveal the same or at least related processes in the behavioral and electrophysiological data. On both levels of observation three highly similar processes could be identified: an increasing, a decreasing and a u-shaped trend. Corresponding processes from the behavioral and electrophysiological data were substantially correlated, with the two u-shaped trends showing the strongest association with each other. Our results provide evidence for the assumption that the same mechanisms underlie attentional blink task performance at the electrophysiological and behavioral levels as assessed by fixed-links models.
Resumo:
The considerable search for synergistic agents in cancer research is motivated by the therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug resistance. Dose-response assessment and drug-drug interaction analysis play an important part in the drug discovery process, however analysis are often poorly done. This dissertation is an effort to notably improve dose-response assessment and drug-drug interaction analysis. The most commonly used method in published analysis is the Median-Effect Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect Principle/Combination Index method leads to inefficiency by ignoring important sources of variation inherent in dose-response data and discarding data points that do not fit the Median-Effect Principle. Previous work has shown that the conventional method yields a high rate of false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in some cases, low power to detect synergy. There is a great need for improving the current methodology. We developed a Bayesian framework for dose-response modeling and drug-drug interaction analysis. First, we developed a hierarchical meta-regression dose-response model that accounts for various sources of variation and uncertainty and allows one to incorporate knowledge from prior studies into the current analysis, thus offering a more efficient and reliable inference. Second, in the case that parametric dose-response models do not fit the data, we developed a practical and flexible nonparametric regression method for meta-analysis of independently repeated dose-response experiments. Third, and lastly, we developed a method, based on Loewe additivity that allows one to quantitatively assess interaction between two agents combined at a fixed dose ratio. The proposed method makes a comprehensive and honest account of uncertainty within drug interaction assessment. Extensive simulation studies show that the novel methodology improves the screening process of effective/synergistic agents and reduces the incidence of type I error. We consider an ovarian cancer cell line study that investigates the combined effect of DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. The hypothesis is that the combination of DNA methylation inhibitors and histone deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell lines compared to treatment with each inhibitor alone. By applying the proposed Bayesian methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic therapies in cell growth inhibition of ovarian cancer cells.
Resumo:
At first sight, experimenting and modeling form two distinct modes of scientific inquiry. This spurs philosophical debates about how the distinction should be drawn (e.g. Morgan 2005, Winsberg 2009, Parker 2009). But much scientific practice casts serious doubts on the idea that the distinction makes much sense. There are two worries. First, the practices of modeling and experimenting are often intertwined in intricate ways because much modeling involves experimenting, and the interpretation of many experiments relies upon models. Second, there are borderline cases that seem to blur the distinction between experiment and model (if there is any). My talk tries to defend the philosophical project of distinguishing models from experiment and to advance the related philosophical debate. I begin with providing a minimalist framework of conceptualizing experimenting and modeling and their mutual relationships. The methods are conceptualized as different types of activities that are characterized by a primary goal, respectively. The minimalist framwork, which should be uncontroversial, suffices to accommodate the first worry. I address the second worry by suggesting several ways how to conceptualize the distinction in a more flexible way. I make a concrete suggestion of how the distinction may be drawn. I use examples from the history of science to argue my case. The talk concentrates and models and experiments, but I will comment on simulations too.
Resumo:
Periacetabular osteotomy (PAO) is an effective approach for surgical treatment of hip dysplasia. The aim of PAO is to increase acetabular coverage of the femoral head and to reduce contact pressures by reorienting the acetabulum fragment after PAO. The success of PAO significantly depends on the surgeon’s experience. Previously, we have developed a computer-assisted planning and navigation system for PAO, which allows for not only quantifying the 3D hip morphology for a computer-assisted diagnosis of hip dysplasia but also a virtual PAO surgical planning and simulation. In this paper, based on this previously developed PAO planning and navigation system, we developed a 3D finite element (FE) model to investigate the optimal acetabulum reorientation after PAO. Our experimental results showed that an optimal position of the acetabulum can be achieved that maximizes contact area and at the same time minimizes peak contact pressure in pelvic and femoral cartilages. In conclusion, our computer-assisted planning and navigation system with FE modeling can be a promising tool to determine the optimal PAO planning strategy.
Resumo:
Recently, steady economic growth rates have been kept in Poland and Hungary. Money supplies are growing rather rapidly in these economies. In large, exchange rates have trends of depreciation. Then, exports and prices show the steady growth rates. It can be thought that per capita GDPs are in the same level and development stages are similar in these two countries. It is assumed that these two economies have the same export market and export goods are competing in it. If one country has an expansion of monetary policy, price increase and interest rate decrease. Then, exchange rate decrease. Exports and GDP will increase through this phenomenon. At the same time, this expanded monetary policy affects another country through the trade. This mutual relationship between two countries can be expressed by the Nash-equilibrium in the Game theory. In this paper, macro-econometric models of Polish and Hungarian economies are built and the Nash- equilibrium is introduced into them.
Resumo:
Chinese government commits to reach its peak carbon emissions before 2030, which requires China to implement new policies. Using a CGE model, this study conducts simulation studies on the functions of an energy tax and a carbon tax and analyzes their effects on macro-economic indices. The Chinese economy is affected at an acceptable level by the two taxes. GDP will lose less than 0.8% with a carbon tax of 100, 50, or 10 RMB/ton CO2 or 5% of the delivery price of an energy tax. Thus, the loss of real disposable personal income is smaller. Compared with implementing a single tax, a combined carbon and energy tax induces more emission reductions with relatively smaller economic costs. With these taxes, the domestic competitiveness of energy intensive industries is improved. Additionally, we found that the sooner such taxes are launched, the smaller the economic costs and the more significant the achieved emission reductions.
Resumo:
Recently, vision-based advanced driver-assistance systems (ADAS) have received a new increased interest to enhance driving safety. In particular, due to its high performance–cost ratio, mono-camera systems are arising as the main focus of this field of work. In this paper we present a novel on-board road modeling and vehicle detection system, which is a part of the result of the European I-WAY project. The system relies on a robust estimation of the perspective of the scene, which adapts to the dynamics of the vehicle and generates a stabilized rectified image of the road plane. This rectified plane is used by a recursive Bayesian classi- fier, which classifies pixels as belonging to different classes corresponding to the elements of interest of the scenario. This stage works as an intermediate layer that isolates subsequent modules since it absorbs the inherent variability of the scene. The system has been tested on-road, in different scenarios, including varied illumination and adverse weather conditions, and the results have been proved to be remarkable even for such complex scenarios.
Resumo:
A walking machine is a wheeled rover alternative, well suited for work in an unstructured environment and specially in abrupt terrain. They have some drawback like speed and power consumption, but they can achieve complex movements and protrude very little the environment they are working on. The locomotion system is determined by the terrain conditions and, in our case, this legged design has been chosen based in a working area like Rio Tinto in the South of Spain, which is a river area with abrupt terrain. A walking robot with so many degrees of freedom can be a challenge when dealing with the analysis and simulations of the legs. This paper shows how to deal with the kinematical analysis of the equations of a hexapod robot based on a design developed by the Center of Astrobiology INTA-CSIC following the classical formulation of equations
Resumo:
In the recent years the missing fourth component, the memristor, was successfully synthesized. However, the mathematical complexity and variety of the models behind this component, in addition to the existence of convergence problems in the simulations, make the design of memristor-based applications long and difficult. In this work we present a memristor model characterization framework which supports the automated generation of subcircuit files. The proposed environment allows the designer to choose and parameterize the memristor model that best suits for a given application. The framework carries out characterizing simulations in order to study the possible non-convergence problems, solving the dependence on the simulation conditions and guaranteeing the functionality and performance of the design. Additionally, the occurrence of undesirable effects related to PVT variations is also taken into account. By performing a Monte Carlo or a corner analysis, the designer is aware of the safety margins which assure the correct device operation.
Resumo:
Dynamic thermal management techniques require a collection of on-chip thermal sensors that imply a significant area and power overhead. Finding the optimum number of temperature monitors and their location on the chip surface to optimize accuracy is an NP-hard problem. In this work we improve the modeling of the problem by including area, power and networking constraints along with the consideration of three inaccuracy terms: spatial errors, sampling rate errors and monitor-inherent errors. The problem is solved by the simulated annealing algorithm. We apply the algorithm to a test case employing three different types of monitors to highlight the importance of the different metrics. Finally we present a case study of the Alpha 21364 processor under two different constraint scenarios.
Resumo:
In this paper, a simulation tool for assisting the deployment of wireless sensor network is introduced and simulation results are verified under a specific indoor environment. The simulation tool supports two modes: deterministic mode and stochastic mode. The deterministic mode is environment dependent in which the information of environment should be provided beforehand. Ray tracing method and deterministic propagation model are employed in order to increase the accuracy of the estimated coverage, connectivity and routing; the stochastic mode is useful for large scale random deployment without previous knowledge on geographic information. Dynamic Source Routing protocol (DSR) and Ad hoc On-Demand Distance Vector Routing protocol (AODV) are implemented in order to calculate the topology of WSN. Hence this tool gives direct view on the performance of WSN and assists users in finding the potential problems of wireless sensor network before real deployment. At the end, a case study is realized in Centro de Electronica Industrial (CEI), the simulation results on coverage, connectivity and routing are verified by the measurement.
Resumo:
Wake effect represents one of the most important aspects to be analyzed at the engineering phase of every wind farm since it supposes an important power deficit and an increase of turbulence levels with the consequent decrease of the lifetime. It depends on the wind farm design, wind turbine type and the atmospheric conditions prevailing at the site. Traditionally industry has used analytical models, quick and robust, which allow carry out at the preliminary stages wind farm engineering in a flexible way. However, new models based on Computational Fluid Dynamics (CFD) are needed. These models must increase the accuracy of the output variables avoiding at the same time an increase in the computational time. Among them, the elliptic models based on the actuator disk technique have reached an extended use during the last years. These models present three important problems in case of being used by default for the solution of large wind farms: the estimation of the reference wind speed upstream of each rotor disk, turbulence modeling and computational time. In order to minimize the consequence of these problems, this PhD Thesis proposes solutions implemented under the open source CFD solver OpenFOAM and adapted for each type of site: a correction on the reference wind speed for the general elliptic models, the semi-parabollic model for large offshore wind farms and the hybrid model for wind farms in complex terrain. All the models are validated in terms of power ratios by means of experimental data derived from real operating wind farms.