995 resultados para Gravity theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adequacy and efficiency of existing legal and regulatory frameworks dealing with corporate phoenix activity have been repeatedly called into question over the past two decades through various reviews, inquiries, targeted regulatory operations and the implementation of piecemeal legislative reform. Despite these efforts, phoenix activity does not appear to have abated. While there is no law in Australia that declares ‘phoenix activity’ to be illegal, the behaviour that tends to manifest in phoenix activity can be capable of transgressing a vast array of law, including for example, corporate law, tax law, and employment law. This paper explores the notion that the persistence of phoenix activity despite the sheer extent of this law suggests that the law is not acting as powerfully as it might as a deterrent. Economic theories of entrepreneurship and innovation can to some extent explain why this is the case and also offer a sound basis for the evaluation and reconsideration of the existing law. The challenges facing key regulators are significant. Phoenix activity is not limited to particular corporate demographic: it occurs in SMEs, large companies and in corporate groups. The range of behaviour that can amount to phoenix activity is so broad, that not all phoenix activity is illegal. This paper will consider regulatory approaches to these challenges via analysis of approaches to detection and enforcement of the underlying law capturing illegal phoenix activity. Remedying the mischief of phoenix activity is of practical importance. The benefits include continued confidence in our economy, law that inspires best practice among directors, and law that is articulated in a manner such that penalties act as a sufficient deterrent and the regulatory system is able to detect offenders and bring them to account. Any further reforms must accommodate and tolerate legal phoenix activity, at least to some extent. Even then, phoenix activity pushes tolerance of repeated entrepreneurial failure to its absolute limit. The more limited liability is misused and abused, the stronger the argument to place some restrictions on access to limited liability. This paper proposes that such an approach is a legitimate next step for a robust and mature capitalist economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-empirical model is presented for describing the interionic interactions in molten salts using the experimentally available structure data. An extension of Bertaut's method of non-overlapping charges is used to estimate the electrostatic interaction energy in ionic melts. It is shown, in agreement with earlier computer simulation studies, that this energy increases when an ionic salt melts. The repulsion between ions is described using a compressible ion theory which uses structure-independent parameters. The van der Waals interactions and the thermal free energy are also included in the total energy, which is minimised with respect to isostructural volume variations to calculate the equilibrium density. Detailed results are presented for three molten systems, NaCl, CaCl2 and ZnCl2, and are shown to be in satisfactory agreement with experiments. With reliable structural data now being reported for several other molten salts, the present study gains relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravitaation kvanttiteorian muotoilu on ollut teoreettisten fyysikkojen tavoitteena kvanttimekaniikan synnystä lähtien. Kvanttimekaniikan soveltaminen korkean energian ilmiöihin yleisen suhteellisuusteorian viitekehyksessä johtaa aika-avaruuden koordinaattien operatiiviseen ei-kommutoivuuteen. Ei-kommutoivia aika-avaruuden geometrioita tavataan myös avointen säikeiden säieteorioiden tietyillä matalan energian rajoilla. Ei-kommutoivan aika-avaruuden gravitaatioteoria voisi olla yhteensopiva kvanttimekaniikan kanssa ja se voisi mahdollistaa erittäin lyhyiden etäisyyksien ja korkeiden energioiden prosessien ei-lokaaliksi uskotun fysiikan kuvauksen, sekä tuottaa yleisen suhteellisuusteorian kanssa yhtenevän teorian pitkillä etäisyyksillä. Tässä työssä tarkastelen gravitaatiota Poincarén symmetrian mittakenttäteoriana ja pyrin yleistämään tämän näkemyksen ei-kommutoiviin aika-avaruuksiin. Ensin esittelen Poincarén symmetrian keskeisen roolin relativistisessa fysiikassa ja sen kuinka klassinen gravitaatioteoria johdetaan Poincarén symmetrian mittakenttäteoriana kommutoivassa aika-avaruudessa. Jatkan esittelemällä ei-kommutoivan aika-avaruuden ja kvanttikenttäteorian muotoilun ei-kommutoivassa aika-avaruudessa. Mittasymmetrioiden lokaalin luonteen vuoksi tarkastelen huolellisesti mittakenttäteorioiden muotoilua ei-kommutoivassa aika-avaruudessa. Erityistä huomiota kiinnitetään näiden teorioiden vääristyneeseen Poincarén symmetriaan, joka on ei-kommutoivan aika-avaruuden omaama uudentyyppinen kvanttisymmetria. Seuraavaksi tarkastelen ei-kommutoivan gravitaatioteorian muotoilun ongelmia ja niihin kirjallisuudessa esitettyjä ratkaisuehdotuksia. Selitän kuinka kaikissa tähänastisissa lähestymistavoissa epäonnistutaan muotoilla kovarianssi yleisten koordinaattimunnosten suhteen, joka on yleisen suhteellisuusteorian kulmakivi. Lopuksi tutkin mahdollisuutta yleistää vääristynyt Poincarén symmetria lokaaliksi mittasymmetriaksi --- gravitaation ei-kommutoivan mittakenttäteorian saavuttamisen toivossa. Osoitan, että tällaista yleistystä ei voida saavuttaa vääristämällä Poincarén symmetriaa kovariantilla twist-elementillä. Näin ollen ei-kommutoivan gravitaation ja vääristyneen Poincarén symmetrian tutkimuksessa tulee jatkossa keskittyä muihin lähestymistapoihin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This masters thesis explores some of the most recent developments in noncommutative quantum field theory. This old theme, first suggested by Heisenberg in the late 1940s, has had a renaissance during the last decade due to the firmly held belief that space-time becomes noncommutative at small distances and also due to the discovery that string theory in a background field gives rise to noncommutative field theory as an effective low energy limit. This has led to interesting attempts to create a noncommutative standard model, a noncommutative minimal supersymmetric standard model, noncommutative gravity theories etc. This thesis reviews themes and problems like those of UV/IR mixing, charge quantization, how to deal with the non-commutative symmetries, how to solve the Seiberg-Witten map, its connection to fluid mechanics and the problem of constructing general coordinate transformations to obtain a theory of noncommutative gravity. An emphasis has been put on presenting both the group theoretical results and the string theoretical ones, so that a comparison of the two can be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he notion of the gravity-induced electric field has been applied to an entire self-gravitating massive body. The resulting electric polarization of the otherwise neutral body, when taken in conjunction with the latter's rotation, is shown to generate an axial-magnetic field of the right type and order of magnitude for certain astrophysical objects. In the present treatment the electric polarization is calculated in the ion-continuum Thomas-Fermi approximation while the electrodynamics of the continuous medium is treated in the nonrelativistic approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalizations of H–J theory have been discussed before in the literature. The present approach differs from others in that it employs geometrical ideas on phase space and classical transformation theory to derive the basic equations. The relation between constants of motion and symmetries of the generalized H–J equations is then clarified. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective medium theory for a system with randomly distributed point conductivity and polarisability is reformulated, with attention to cross-terms involving the two disorder parameters. The treatment reveals a certain inconsistency of the conventional theory owing to the neglect of the Maxwell-Wagner effect. The results are significant for the critical resistivity and dielectric anomalies of a binary liquid mixture at the phase separation point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical results derived in Part I (Ramachandran, G.N., Lakshminarayan, A.V. and Kolaskar, A.S. (1973) Biochim. Biophys. Acta 303, 8–13) that the three bonds of the peptide unit meeting at N can have a pyramidal structure is confirmed by an analysis of 14 published crystal structures of small peptides. It is shown that the dihedral angles θN and Δω are correlated, while θC, is small and is uncorrelated with Δω, showing that the non-planar distortion at C′ is generally small.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized Ginzburg-Landau approach is used to study the nonmonotonic temperature dependence of the upper critical field H c 2(T) in antiferromagnetic superconductors RE(Mo)6S8; RE = Dy, Tb, Gd. It is found that electrodynamic effects incorporated through screening and indirect coupling between the staggered magnetization M Q (T) and superconducting order parameter psgr cannot explain the observed nonmonotonicity. This suggests that the direct coupling between the two order parameters should be considered to understand the experimental results, a finding which is consistent with recent microscopic calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of CNDO/2 calculations on N-methyl acetamide, it is shown that the state of minimum energy of the trans-peptide unit is a non-planar conformation, with the NH and NC2α bonds being significantly out of the plane formed by the atoms C1α, C′, O and N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.