837 resultados para Decision Support
Resumo:
Dissertação Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica no perfil de Manutenção e Produção
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Este documento apresenta o trabalho desenvolvido no âmbito da disciplina de “Dissertação/Projeto/Estágio”, do 2º ano do Mestrado em Energias Sustentáveis. O crescente consumo energético das sociedades desenvolvidas e emergentes, associado ao consequente aumento dos custos de energia e dos danos ambientais resultantes, promove o desenvolvimento de novas formas de produção de energia, as quais têm como prioridade a sua obtenção ao menor custo possível e com reduzidos impactos ambientais. De modo a poupar os recursos naturais e reduzir a emissão com gases de efeito de estufa, é necessária a diminuição do consumo de energia produzida a partir de combustíveis fósseis. Assim, devem ser criadas alternativas para um futuro sustentável, onde as fontes renováveis de energia assumam um papel fundamental. Neste sentido, a produção de energia elétrica, através de sistemas solares fotovoltaicos, surge como uma das soluções. A presente dissertação tem como principal objetivo a realização do dimensionamento de uma central de miniprodução fotovoltaica, com ligação à rede elétrica, em uma exploração agrícola direcionada à indústria de laticínios, e o seu respetivo estudo de viabilidade económica. A exploração agrícola, que serve de objeto de estudo, está localizada na Ilha Graciosa, Açores, sendo a potência máxima a injetar na Rede Elétrica de Serviço Público, pela central de miniprodução, de 10 kW. Para o dimensionamento foi utilizado um software apropriado e reconhecido na área da produção de energia elétrica através de sistemas fotovoltaicos – o PVsyst –, compreendendo as seguintes etapas: a) definição das caraterísticas do local e do projeto; b) seleção dos módulos fotovoltaicos; c) seleção do inversor; d) definição da potência de ligação à rede elétrica da unidade de miniprodução. Posteriormente, foram estudadas diferentes hipóteses de sistemas fotovoltaicos, que se distinguem na opção de estrutura de fixação utilizada: dois sistemas fixos e dois com eixo incorporado. No estudo de viabilidade económica foram realizadas duas análises distintas a cada um dos sistemas fotovoltaicos considerados no dimensionamento, nomeadamente: uma análise em regime remuneratório bonificado e uma análise em regime remuneratório geral. Os resultados obtidos nos indicadores económicos do estudo de viabilidade económica realizado, serviram de apoio à decisão pelo sistema fotovoltaico mais favorável ao investimento. Conclui-se que o sistema fotovoltaico com inclinação adicional é a opção mais vantajosa em ambos os regimes remuneratórios analisados. Comprova-se, assim, que o sistema fotovoltaico com maior valor de produção de energia elétrica anual, que corresponde ao sistema fotovoltaico de dois eixos, não é a opção com maior rentabilidade em termos económicos, isto porque a remuneração proveniente da sua produção excedente não é suficiente para colmatar o valor do investimento mais acentuado de modo a obter indicadores económicos mais favoráveis, que os do sistema fotovoltaico com inclinação adicional. De acordo com o estudo de viabilidade económica efetuado independentemente do sistema fotovoltaico que seja adotado, é recuperado o investimento realizado, sendo a remuneração efetiva superior à que foi exigida. Assim, mesmo tendo em consideração o risco associado, comprova-se que todos os sistemas fotovoltaicos, em qualquer dos regimes remuneratórios, correspondem a investimentos rentáveis.
Resumo:
A distinção entre miocárdio atordoado e danificado tem sido uma preocupação relevante, no cenário de um enfarte agudo do miocárdio (EAM). A avaliação da viabilidade do miocárdio, pós-enfarte, é de importância vital, no contexto clínico, principalmente numa fase inicial. Actualmente a Ressonância Magnética Cardíaca é o exame de referência para a avaliação de viabilidade do miocárdio. No entanto, é um exame com elevado custo e de difícil acesso. Estudos preliminares demonstraram potencial na utilização de imagens por Tomografia Computorizada para avaliação da área de enfarte, quer em estudos animais quer em humanos. É objectivo desta tese verificar a utilidade de um protocolo de avaliação de viabilidade do miocárdio, com base em imagens de realce tardio (RT) por Tomografia Computorizada, após um procedimento de intervenção coronária percutânea, no contexto de enfarte agudo do miocárdio com elevação do segmento ST (STEMI). Pretende-se igualmente contribuir para a análise da imagem médica do miocárdio, proporcionando métodos de quantificação do RT e software de suporte à decisão médica nesta modalidade de imagem substancialmente recente. São avaliados vários processos para a quantificação do volume de RT, incluindo um método inovador baseado na detecção automática do miocárdio normal. _E ainda proposto um algoritmo para detecção automática do grau de transmuralidade, por segmento do miocárdio, e comparado o seu grau de eficiência face ao diagnóstico médico dos mesmos exames. Apesar do reduzido número de exames utilizado para validação das técnicas descritas nesta tese, os resultados são bastante promissores e podem constituir uma mais-valia no auxilio à gestão do paciente com EAM.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Vias de Comunicação e Transportes
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.
Resumo:
A presente dissertação teve como objetivo fazer uma análise da viabilidade técnica da utilização dos condutores de alta temperatura nas linhas aéreas de MT, identificar vantagens, analisar inconvenientes, e estabelecer um comparativo a custos médios com as soluções convencionais. Foi efetuado o estudo de um caso real da EDP Distribuição que consistia na necessidade do aumento da capacidade de transporte de energia da linha aérea a 15 kV Espinho-Sanguedo. Neste foi ponderada a solução onde se poderia efetuar passagem de linha simples para linha dupla em alumínio-aço (AA) 160 mm2 ou a solução alternativa e inovadora de substituição dos condutores existentes por condutores de alta temperatura ACCC 182 mm2. Para isso foram efetuados cálculos e também criada uma ferramenta de apoio à decisão, para validação dos mesmos, com o intuito de mais tarde poder ser aplicada nas linhas aéreas em Média Tensão em todo o país e, sempre que necessário, se possa fazer um estudo de ponderação técnica de forma sistemática e estruturada. Neste trabalho estão identificadas as vantagens, foram relatados os inconvenientes, e estabeleceu-se um comparativo a custos médios da utilização de condutores de alta temperatura com as soluções convencionais. Antes de poder ser realizado um estudo do caso concreto da Linha aérea Espinho-Sanguedo foi necessário um aprofundamento do estado da arte no que diz respeito à comparação entre o cabo de alta temperatura ACCC e o cabo convencional ACSR, sendo este o mais utilizado nas linhas aéreas em MT. Os cabos de alta temperatura trouxeram inovações neste tema de transporte de energia, e como tal surgiu a necessidade de um estudo mais aprofundado da sua constituição, destacando o seu núcleo formado pelo compósito de fibra de carbono e fibra de vidro. Foi também analisado vantagens e desvantagens do cabo de alta temperatura e até mesmo situações onde a sua aplicação poderá ser vantajosa, de modo a tirar proveito das suas caraterísticas em que se destacam altas temperaturas de funcionamento e flechas reduzidas. Para elaborar um projeto de uma linha aérea em média tensão é necessário considerar a legislação em vigor, os aspetos ambientais e económicos, respeitando e garantindo as premissas do cálculo elétrico e mecânico. Economicamente este tipo de cabo (ACCC) é mais dispendioso do que os convencionais, no entanto o estudo realizado permitiu perceber que a sua implementação técnica é vantajosa em linhas aéreas de elevada capacidade de transporte de energia, sobretudo nos casos onde serão necessárias instalar linhas duplas ou linhas simples de seções elevadas. Devido às suas caraterísticas mecânicas, estes cabos permitem melhorar as linhas na sua dimensão, podendo diminuir o número de apoios a instalar, podendo diminuir a robustez dos apoios e permitir maior facilidade na montagem. Estas vantagens traduzem-se em menores impactos ambientais e permitem sobretudo reduzir os constrangimentos com os proprietários dos terrenos onde os apoios são implantados.
Resumo:
A liberalização dos mercados de energia elétrica e a crescente integração dos recursos energéticos distribuídos nas redes de distribuição, nomeadamente as unidades de produção distribuída, os sistemas de controlo de cargas através dos programas de demand response, os sistemas de armazenamento e os veículos elétricos, representaram uma evolução no paradigma de operação e gestão dos sistemas elétricos. Este novo paradigma de operação impõe o desenvolvimento de novas metodologias de gestão e controlo que permitam a integração de todas as novas tecnologias de forma eficiente e sustentável. O principal contributo deste trabalho reside no desenvolvimento de metodologias para a gestão de recursos energéticos no contexto de redes inteligentes, que contemplam três horizontes temporais distintos (24 horas, 1 hora e 5 minutos). As metodologias consideram os escalonamentos anteriores assim como as previsões atualizadas de forma a melhorar o desempenho total do sistema e consequentemente aumentar a rentabilidade dos agentes agregadores. As metodologias propostas foram integradas numa ferramenta de simulação, que servirá de apoio à decisão de uma entidade agregadora designada por virtual power player. Ao nível das metodologias desenvolvidas são propostos três algoritmos de gestão distintos, nomeadamente para a segunda (1 hora) e terceira fase (5 minutos) da ferramenta de gestão, diferenciados pela influência que os períodos antecedentes e seguintes têm no período em escalonamento. Outro aspeto relevante apresentado neste documento é o teste e a validação dos modelos propostos numa plataforma de simulação comercial. Para além das metodologias propostas, a aplicação permitiu validar os modelos dos equipamentos considerados, nomeadamente, ao nível das redes de distribuição e dos recursos energéticos distribuidos. Nesta dissertação são apresentados três casos de estudos, cada um com diferentes cenários referentes a cenários de operação futuros. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias e algoritmos propostos. Adicionalmente são apresentadas comparações das metodologias propostas relativamente aos resultados obtidos, complexidade de gestão em ambiente de simulação para as diferentes fases da ferramenta proposta e os benefícios e inconvenientes no uso da ferramenta proposta.
Resumo:
Os Sistemas de Apoio à Tomada de Decisão em Grupo (SADG) surgiram com o objetivo de apoiar um conjunto de decisores no processo de tomada de decisão. Uma das abordagens mais comuns na literatura para a implementação dos SADG é a utilização de Sistemas Multi-Agente (SMA). Os SMA permitem refletir com maior transparência o contexto real, tanto na representação que cada agente faz do decisor que representa como no formato de comunicação utilizado. Com o crescimento das organizações, atualmente vive-se uma viragem no conceito de tomada de decisão. Cada vez mais, devido a questões como: o estilo de vida, os mercados globais e o tipo de tecnologias disponíveis, faz sentido falar de decisão ubíqua. Isto significa que o decisor deverá poder utilizar o sistema a partir de qualquer local, a qualquer altura e através dos mais variados tipos de dispositivos eletrónicos tais como tablets, smartphones, etc. Neste trabalho é proposto um novo modelo de argumentação, adaptado ao contexto da tomada de decisão ubíqua para ser utilizado por um SMA na resolução de problemas multi-critério. É assumido que cada agente poderá utilizar um estilo de comportamento que afeta o modo como esse agente interage com outros agentes em situações de conflito. Sendo assim, pretende-se estudar o impacto da utilização de estilos de comportamento ao longo do processo da tomada de decisão e perceber se os agentes modelados com estilos de comportamento conseguem atingir o consenso mais facilmente quando comparados com agentes que não apresentam nenhum estilo de comportamento. Pretende-se ainda estudar se o número de argumentos trocados entre os agentes é proporcional ao nível de consenso final após o processo de tomada de decisão. De forma a poder estudar as hipóteses de investigação desenvolveu-se um protótipo de um SADG, utilizando um SMA. Desenvolveu-se ainda uma framework de argumentação que foi adaptada ao protótipo desenvolvido. Os resultados obtidos permitiram validar as hipóteses definidas neste trabalho tendo-se concluído que os agentes modelados com estilos de comportamento conseguem na maioria das vezes atingir um consenso mais facilmente comparado com agentes que não apresentam nenhum estilo de comportamento e que o número de argumentos trocados entre os agentes durante o processo de tomada de decisão não é proporcional ao nível de consenso final.