967 resultados para Wideband antennas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel ultra-wideband electromagnetic pulse generating method based on the photoconductive semiconductor switches (PCSS) is presented. Gallium arsenide is used to develop the PCSS for an ultrashort electromagnetic pulse source. The pulse generated by such PCSS is within picosecond (ps) time scale, and can yield power pulse with an voltage over 10 kV. The experimental results show that the pulses are stable, with the peak-peak amplitude change of 6% and the time jitter within several picoseconds. The radiations of the PCSS triggered by the picosecond laser and fenitosecond laser pulse series illustrate that the electromagnetic pulses would have high repetition of more than 80 MHz and frequency bandwidth of DC-6 GHz. The radiations of "lock-on " mode of the PCSS are also analyzed here. (c) 2007 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A photoconductive semiconductor switch (PCSS) would work in a nonlinear mode under high biased electrical field. The experimental results of nonlinear critical state have shown that both the biased voltage and the laser energy may have working thresholds to turn on the nonlinear modes. The relation between the biased voltage (aid the laser energy is inverse ratio, i.e., higher biased field need lower laser energy for nonlinear mode, and vise versa. At the nonlinear critical point, the output of PCSS is unstable, as both the linear and nonlinear pulse may occur. As the laser energy and biased field increase, the PCSS would work in the nonlinear mode steadily. (C) 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 56-59 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOT 10.1002/mop.24001

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the design of a wide-band low-noise amplifier (LNA) implemented in 0.35μm SiGe BiCMOS technology for cable and terrestrial tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1 ~ 1GHz wide bandwidth and 18. 8dB gain with less than 1.4dB of gain variation. The noise figure of the wideband LNA is 5dB, and its 1dB compression point is - 2dBm and IIP3 is 8dBm. The LNA dissipates 120mW of power with a 5V supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semiconductor optical amplifier gate based on tensile-strained quasi-bulk InGaAs is developed. At injection current of 80mA,a 3dB optical bandwidth of more than 85nm is achieved due to dominant band-filling effect.Moreover, the most important is that very low polarization dependence of gain (<0. 7dB),fiber-to-fiber lossless operation current (70~90mA) and a high extinction ratio (>50dB) are simultaneously obtained over this wide 3dB optical bandwidth (1520~1609nm) which nearly covers the spectral region of the whole C band (1525~1565nm)and the whole L band (1570~ 1610nm). The gating time is also improved by decreasing carrier lifetime. The wideband polarization-insensitive SOA-gate is promising for use in future dense wavelength division multiplexing (DWDM) communication systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The open-short-load (OSL) method is very simple and widely used, for one-port test fixture calibration. In this paper, this method. is extended to the two-port calibration of test fixtures for the first time. The problem of phase uncertainty arising in this application has been solved. The comparison between our results and those obtained with the short-open-load-thru (SOLT) method shows that the method established is accurate enough for practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of frequency limitation arising in calibration of the test fixtures is investigated in this paper. It is found that at some frequencies periodically, the accuracy of the methods becomes very low, and. the denominators of the expressions of the required S-parameters approach zero. This conclusion can be drawn whether-the test fixtures, are symmetric or not. A good agreement between theory and experiment is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the reciprocal-test fixtures, there are six independent S-parameters to. be determined, and the thru-short-match (TSM) calibration can provide eight calibration equations. In this paper, the relation of calibration equations is investigated. It has been shown that the four equations obtained from the measurement with a transmission standard can be used simultaneously in the calibration. Experimental results show that the different choice of equations will lead to quite different solution, and the calibration accuracy can be improved by taking advantages of the established relation among the calibration equations and properly choosing calibration equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-space, defined as the altitude region between 20 and 100 km, offers many capabilities that are not accessible for low Earth-orbit (LEO) satellites or airplanes because it is above storm and not constrained by orbital mechanics and high fuel consumption. Hence, a high flying speed can be obtained for the maneuvering vehicles operating in near-space. This offers a promising solution to simultaneous high-resolution and wide-swath synthetic aperture radar (SAR) imaging. As such, one near-space wide-swath SAR imaging technique is presented in this letter. The system configuration, signal model, and imaging scheme are described. An example near-space SAR system is designed, and its imaging performance is analyzed. Simulation results show that near-space maneuvering vehicle SAR indeed seems to be a promising solution to wide-swath SAR imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new nonlinear integral transform relating the ocean wave spectrum to the along-track interferometric synthetic aperture radar (AT-INSAR) image spectrum. The AT-INSAR, which is a synthetic aperture radar (SAR) employing two antennas displaced along the platform's flight direction, is considered to be a better instrument for imaging ocean waves than the SAR. This is because the AT-INSAR yields the phase spectrum and not only the amplitude spectrum as with the conventional SAR. While the SAR and AT-INSAR amplitude spectra depend strongly on the modulation of the normalized radar cross section (NRCS) by the long ocean waves, which is poorly known, the phase spectrum depends only weakly on this modulation. By measuring the phase difference between the signals received by both antennas, AT-INSAR measures the radial component of the orbital velocity associated with the ocean waves, which is related to the ocean wave height field by a well-known transfer function. The nonlinear integral transform derived in this paper differs from the one previously derived by Bao et al. [1999] by an additional term containing the derivative of the radial component of the orbital velocity associated with the long ocean waves. By carrying out numerical simulations, we show that, in general, this additional term cannot be neglected. Furthermore, we present two new quasi-linear approximations to the nonlinear integral transform relating the ocean wave spectrum to the AT-INSAR phase spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party quantum entanglement to distant users in a quantum communication system and determining the ability of quantum optical channels to reliably transmit information. A recent proposal for a quantum communication architecture that realizes long-distance, high-fidelity qubit teleportation is reviewed. Previous work on this communication architecture is extended in two primary ways. First, models are developed for assessing the effects of amplitude, phase, and frequency errors in the entanglement source of polarization-entangled photons, as well as fiber loss and imperfect polarization restoration, on the throughput and fidelity of the system. Second, an error model is derived for an extension of this communication architecture that allows for the production and storage of three-party entangled Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication architecture in qubit teleportation and quantum secret sharing communication protocols is presented. Recent work on determining the channel capacity of optical channels is extended in several ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing the quantum version of classical colored Gaussian-noise channels. The proof is strongly mo- tivated by the standard technique of whitening Gaussian noise used in classical information theory. Minimum output entropy problems related to these channel capacity derivations are also studied. These single-user Bosonic capacity results are extended to a multi-user scenario by deriving capacity regions for single-mode and wideband coherent-state multiple access channels. An even larger capacity region is obtained when the transmitters use non- classical Gaussian states, and an outer bound on the ultimate capacity region is presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the effects of antenna detuning on wireless devices caused by the presence of the human body,particularly the wrist. To facilitate repeatable and consistent antenna impedance measurements, an accurate and low cost human phantom arm, that simulates human tissue at 433MHz frequencies, has been developed and characterized. An accurate and low cost hardware prototype system has been developed to measure antenna return loss at a frequency of 433MHz and the design, fabrication and measured results are presented. This system provides a flexible means of evaluating closed-loop reconfigurable antenna tuning circuits for use in wireless mote applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When miniaturized wireless sensors are placed on or close to the human body, they can experience a significant loss inperformance due to antenna detuning, resulting in degradationof wireless performance as well as decreased battery lifetime.Several antenna tuning technologies have been proposed formobile wireless devices but devices suitable for widespread integration have yet to emerge. This paper highlights the possible advantages of antenna tuning for wearable wireless sensors and presents the design and characterization of a prototype 433MHz tuner module.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultra Wide Band (UWB) transmission has recently been the object of considerable attention in the field of next generation location aware wireless sensor networks. This is due to its fine time resolution, energy efficient and robustness to interference in harsh environments. This paper presents a thorough applied examination of prototype IEEE 802.15.4a impulse UWB transceiver technology to quantify the effect of line of sight (LOS) and non line of sight (NLOS) ranging in real indoor and outdoor environments. Results included draw on an extensive array of experiments that fully characterize the 802.15.4a UWB transceiver technology, its reliability and ranging capabilities for the first time. A new two way (TW) ranging protocol is proposed. The goal of this work is to validate the technology as a dependable wireless communications mechanism for the subset of sensor network localization applications where reliability and precision positions are key concerns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, Grant No. 07/CE/11147)