981 resultados para Ultrahigh Vacuum Chemical Vapor Deposition
Resumo:
ZnO thin films were grown by metal-organic chemical vapour deposition using methanol as oxidant. Rapid thermal annealing (RTA) was performed in an ambient of one atmosphere oxygen at 900 degrees C for 60 s. The RTA properties of the films have been characterized using scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, photoluminescence spectra and Hall measurement. The grains of the film were well coalesced and the surface became denser after RTA. The full-width at half maximum of rocking curves was only 496 arcsec. The ZnO films were also proved to have good optical quality. The Hall mobility increased to 43.2 cm(2) V-1 s(-1) while the electron concentration decreased to 6.6 x 10(16) cm(-3). It is found that methanol is a potential oxidant for ZnO growth and the quality of ZnO film can be improved substantially through RTA.
Resumo:
We have studied the temperature dependence of absorption edge of GaN thin films grown on sapphire substrate by metal-organic chemical vapor deposition using optical absorption spectroscopy. A shift in absorption edge of about 55 meV has been observed in temperature range 273-343 K. We have proposed a theoretical model to find the energy gap from absorption coefficient using alpha = alpha(max) + (alpha(min) - alpha(max))/[1 + exp 2(E - E-g + KT)/KT]. Temperature dependence of band gap has also been studied by finding an appropriate theoretical fit to our data using E-g(T) = E-g(273 K) - (8.8 x 10(-4)T(2))/(483 + T) + 0.088 (Varshni empirical formula) and E-g(T) = E-g(273 K)-0.231447/[exp(362/T)-1] + 0.082 relations. It has been found that data can be fitted accurately after adding a factor similar to 0.08 in above equations. Debye temperature (483 K) and Einstein temperature (362 K) in the respective equations are found mutually in good agreement.
Resumo:
ZnO vertical well-aligned nanorods were grown on A1N/sapphire by using metal-organic chemical vapor deposition. We first observed the ZnO net-like structures under the nanorods. The different strain was determined in these two layers by using double crystal X-ray diffraction, Raman spectra, which revealed that the nanorods were relaxed and the net-like structures were strained. The optical properties of two layers were measured by using the cathodoluminescence and photo luminescence and the shift of UV peaks was observed. Moreover, the growth mechanism of the ZnO nanorods and the net-like structures is discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Six-period 4 nm GaN/10 nm AlxGa1-xN superlattices with different Al mole fractions x were prepared on (0001) sapphire substrates by low-temperature metal-organic chemical vapor deposition. The linear electro-optic (Pockels) effect was studied by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The measured electro-optic coefficients, gamma(13)=5.60 +/- 0.18 pm/V, gamma(33)=19.24 +/- 1.21 pm/V (for sample 1, x=0.3), and gamma(13)=3.09 +/- 0.48 pm/V, gamma(33)=8.94 +/- 0.36 pm/V (for sample 2, x=0.1), respectively, are about ten times larger than those of GaN bulk material. The enhancement effect in GaN/AlxGa1-xN superlattice can be attributed to the large built-in field at the interfaces, depending on the mole fraction of Al. (C) 2007 American Institute of Physics.
Resumo:
The minority carrier diffusion length of n-type GaN films grown by metalorganic chemical vapor deposition (MOCVD) has been studied by measuring the surface photovoltaic (PV) spectra. It was found that the minority carrier diffusion length of undoped n-type GaN is considerably larger than that in lightly Si-doped GaN. However, the data suggested that the dislocation and electron concentration appear not to be responsible for the minority carrier diffusion length. It is suggested that Si doping plays an important role in decreasing the minority carrier diffusion length.
Resumo:
In this paper, recent progresses in optical analysis of dislocation-related physical properties in GaN-based epilayers are surveyed with a brief review. The influence of dislocations on both near-band edge emission and yellow luminescence (YL) is examined either in a statistical way as a function of dislocation density or focused on individual dislocation lines with a high spatial resolution. Threading dislocations may introduce non-radiative recombination centers and enhance YL, but their effects are affected by the structural and chemical environment. The minority carrier diffusion length may be dependent on either dislocation density or impurity doping as confirmed by the result of photovoltaic spectra. The in situ optical monitoring of the strain evolution process is employed during GaN heteroepitaxy using an AIN interlayer. A typical transition of strain from compression to tension is observed and its correlation with the reduction and inclination of threading dislocation lines is revealed. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Nonpolar a-plane [(1120)] GaN samples have been grown on r-plane [(1102)] sapphire substrates by low-pressure metal-organic chemical-vapor deposition. The room-temperature first and second order Raman scattering spectra of nonpolar a-plane GaN have been measured in surface and edge backscattering geometries. All of the phonon modes that the selection rules allow have been observed in the first order Raman spectra. The frequencies and linewidths of the active modes have been analyzed. The second order phonon modes are composed of acoustic overtones, acoustic-optical and optical-optical combination bands, and optical overtones. The corresponding assignments of second order phonon modes have been made. (c) 2007 American Institute of Physics.
Resumo:
The V/III ratio in the initial growth stage of metalorganic chemical vapor deposition has an important influence on the quality of a GaN epilayer grown on a low-temperature AIN buffer layer and c-plane sapphire substrate. A weaker yellow luminescence, a narrower half-width of the X-ray diffraction peak, and a higher electron mobility result when a lower V/III ratio is taken. The intensity of in situ optical reflectivity measurements indicates that the film surface is rougher at the beginning of GaN growth, and a longer time is needed for the islands to coalesce and for a quasi-two dimensional mode growth to start. A comparison of front- and back-illuminated photoluminescence spectra confirms that many threading dislocations are bent during the initial stage, leading to a better structural quality of the GaN layer. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with high mobility GaN channel layer were grown on 50 min diameter semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition and large periphery HEMT devices were fabricated and characterized. High two-dimensional electron gas mobility of 2215 cm(2)/V s at room temperature with sheet electron concentration of 1.044 x 10(13)/cm(2) was achieved. The 50 mm diameter HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with the resistance uniformity of 2.02%. Atomic force microscopy measurements revealed a smooth AlGaN surface with a root-mean-square roughness of 0.27 nm for a scan area of 5 mu mi x 5 pm. The 1-mm gate width devices fabricated using the materials demonstrated a very high continuous wave output power of 9.39 W at 8 GHz, with a power added efficiency of 46.2% and power gain of 7.54 dB. A maximum drain current density of 1300 mA/mm, an extrinsic transconductance of 382 mS/mm, a current gain cutoff frequency of 31 GHz and a maximum frequency of oscillation 60 GHz were also achieved in the same devices. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The authors report the effects of rapid thermal annealing (RTA) on the emission properties of highly uniform self-assembled InAs quantum dots (QDs) emitting at 1.3 mu m grown on GaAs substrate by metal organic chemical vapor deposition. Postgrowth RTA experiments were performed under N-2 flow at temperatures ranging from 600 to 900 degrees C for 30 s using GaAs proximity capping. Surprisingly, in spite of the capping, large blueshifts in the emission peak (up to about 380 meV at 850 degrees C) were observed (even at low annealing temperatures) along with enhanced integrated photoluminescence (PL) intensities. Moreover, pronounced peak broadenings occurred at low annealing temperatures (< 700 degrees C), indicating that RTA does not always cause peak narrowing, as is typically observed with traditional QDs with large inhomogeneous PL linewidths. The mechanism behind the large peak blueshift was studied and found to be attributed to the as-grown QDs with large size, which cause a larger dot-barrier interface and greater strain in and near the QD regions, thereby greatly promoting Ga-In intermixing across the interface during RTA. The results reported here demonstrate that it is possible to significantly shift the emission peak of the QDs by RTA without any additional procedures, even at lower annealing temperatures. (c) 2007 American Institute of Physics.
Resumo:
Diamond films were prepared by microwave plasma chemical vapor deposition (MWPCVD). In order to obtain better field emission properties, the samples coated with different metals were prepared. The results showed that the field emission properties of diamond coated with metals could be greatly improved in comparison to pure diamond film and the different kinds of coated metals have different influences on the field emission properties. The possible reasons of effects on the field emission properties are discussed, which were probably due to the reduced effective surface work function by metal coatings; but the detail of the mechanism should be studied further. The surface morphology and microstructure of the sample were characterized by Atomic Force Microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray Diffraction (XRD) and Raman spectrum tests. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effects of Si and Mg doping on the crystalline quality and In distribution in the InGaN films were studied by atomic force microscope (AFM), triple crystal X-ray diffraction (TCXRD) and Rutherford backscattering spectrometry (RBS). The undoped, Si-doped and Mg-doped InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) on (0 0 0 1) sapphire substrates. The electronic concentration in the Si-doped InGaN is about 2 x 10(19) cm(-3). It is found that the crystalline quality and In distribution in InGaN is slightly affected by the Si doping. In the Mg doped-case, the hole concentration is about 4 x 10(18) cm(-3) after annealing treatment. The surface morphology and crystalline quality of the Mg-doped InGaN are deteriorated significantly compared with the undoped InGaN. The growth rate of Mg-doped InGaN is higher than the undoped InGaN. Mg doping enhances the In incorporation in the InGaN alloy. The increase in In composition in the growth direction is more severe than the undoped InGaN. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
High-mobility Al0.3Ga0.7N/AlN/GaN high electron mobility transistors (HEMT) structure has been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. Electron mobility of 2185 cm(2)/V s at room temperature and 15,400 cm(2)/V s at 80 K with 2DEG density of 1.1 X 10(13) cm(-2) are achieved. The corresponding sheet resistance of the HEMT wafer is 258.7 Omega/sq. The AlN interfacial layer between the GaN buffer and the AlGaN barrier layer reduces the alloy disorder scattering. X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements have been conducted, and confirmed that the wafer has a high crystal quality. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In undoped high-resistivity GaN epilayers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire, deep levels are investigated by persistent photoconductivity (PPC) and optical quenching (OQ) of photoconductivity (PC) measurements. The PPC and OQ are studied by exciting the samples with two beams of radiation of various wavelengths and intensities. When the light wavelengths of 300 and 340 nm radiate the GaN epilayer, the photocurrent without any quenching effect is rapidly increased because the band gap transition only occurs. If the background light is 340 nm and the quenching light is 564 or 828 nm, the quenching of a small photocurrent generates but clearly. Two broad quenching bands that extend from 385 to 716 nm and from 723 to 1000 nm with a maximum at approximately 2.2 eV (566 nm) is observed. These quenching bands are attributed to hole trap level's existence in the GaN epilayer. We point out that the origin of the defects responsible for the optical quenching can be attributed to nitrogen antisite and/or gallium vacancy. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Enhancement of the electrical properties in an AlGaN/GaN high electron mobility transistor (HEMT) structures was demonstrated by employing the combination of a high mobility GaN channel layer and an AlN interlayer. The structures were grown on 50 mm semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition (MOCVD). The room temperature (RT) two-dimensional electron gas (2DEG) mobility was as high as 2215 cm(2)/V s, with a 2DEG concentration of 1.044 x 10(13)cm(-2). The 50 mm HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with a resistance uniformity of 2.02%. The 0.35 Pin gate length HEMT devices based on this material structure, exhibited a maximum drain current density of 1300 mA/mm, a maximum extrinsic transconductance of 314 mS/mm, a current gain cut-off frequency of 28 GHz and a maximum oscillation frequency of 60 GHz. The maximum output power density of 4.10 W/mm was achieved at 8 GHz, with a power gain of 6.13 dB and a power added efficiency (PAE) of 33.6%. (c) 2006 Elsevier B.V. All rights reserved.