931 resultados para Spatial conditional autoregressive model
Resumo:
This paper deals with the testing of autoregressive conditional duration (ACD) models by gauging the distance between the parametric density and hazard rate functions implied by the duration process and their non-parametric estimates. We derive the asymptotic justification using the functional delta method for fixed and gamma kernels, and then investigate the finite-sample properties through Monte Carlo simulations. Although our tests display some size distortion, bootstrapping suffices to correct the size without compromising their excellent power. We show the practical usefulness of such testing procedures for the estimation of intraday volatility patterns.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.
Resumo:
Este trabalho propõe um instrumento capaz de absorver choques no par BRL/USD, garantindo ao seu detentor a possibilidade de realizar a conversão entre essas moedas a uma taxa observada recentemente. O Volatility Triggered Range Forward assemelha-se a um instrumento forward comum, cujo preço de entrega não é conhecido inicialmente, mas definido no momento em que um nível de volatilidade pré-determinado for atingido na cotação das moedas ao longo da vida do instrumento. Seu cronograma de ajustes pode ser definido para um número qualquer de períodos. Seu apreçamento e controle de riscos é baseado em uma árvore trinomial ponderada entre dois possíveis regimes de volatilidade. Esses regimes são determinados após um estudo na série BRL/USD no período entre 2003 e 2009, basedo em um modelo Switching Autoregressive Conditional Heteroskedasticity (SWARCH).
Resumo:
We study the effects of a conditional transfers program on school enrollment and performance in Mexico. We provide a theoretical framework for analyzing the dynamic educational decision and process inc1uding the endogeneity and uncertainty of performance (passing grades) and the effect of a conditional cash transfer program for children enrolled at school. Careful identification of the program impact on this model is studied. This framework is used to study the Mexican social program Progresa in which a randomized experiment has been implemented and allows us to identify the effect of the conditional cash transfer program on enrollment and performance at school. Using the mIes of the conditional program, we can explain the different incentive effects provided. We also derive the formal identifying assumptions needed to provide consistent estimates of the average treatment effects on enrollment and performance at school. We estimate empirically these effects and find that Progresa had always a positive impact on school continuation whereas for performance it had a positive impact at primary school but a negative one at secondary school, a possible consequence of disincentives due to the program termination after the third year of secondary school.
Resumo:
This paper deals with the estimation and testing of conditional duration models by looking at the density and baseline hazard rate functions. More precisely, we foeus on the distance between the parametric density (or hazard rate) function implied by the duration process and its non-parametric estimate. Asymptotic justification is derived using the functional delta method for fixed and gamma kernels, whereas finite sample properties are investigated through Monte Carlo simulations. Finally, we show the practical usefulness of such testing procedures by carrying out an empirical assessment of whether autoregressive conditional duration models are appropriate to oIs for modelling price durations of stocks traded at the New York Stock Exchange.
Resumo:
The estimation of labor supply elasticities has been an important issue m the economic literature. Yet all works have estimated conditional mean labor supply functions only. The objective of this paper is to obtain more information on labor supply, by estimating the conditional quantile labor supply function. vI/e use a sample of prime age urban males employees in Brazil. Two stage estimators are used as the net wage and virtual income are found to be endogenous to the model. Contrary to previous works using conditional mean estimators, it is found that labor supply elasticities vary significantly and asymmetrically across hours of work. vVhile the income and wage elasticities at the standard work week are zero, for those working longer hours the elasticities are negative.
Resumo:
The objective of this paper is to evaluate the effect of the 1985 ”Employment Services for Ex-Offenders” (ESEO) program on recidivism. Initially, the sample has been split randomly in a control group and a treatment group. However, the actual treatment (mainly being job related counseling) only takes place conditional on finding a job, and not having been arrested, for those selected in the treatment group. We use a multiple proportional hazard model with unobserved heterogeneity for job seach and recidivism time which incorporates the conditional treatment effect. We find that the program helps to reduce criminal activity, contrary to the result of the previous analysis of this data set. This finding is important for crime prevention policy.
Resumo:
This paper develops a general method for constructing similar tests based on the conditional distribution of nonpivotal statistics in a simultaneous equations model with normal errors and known reducedform covariance matrix. The test based on the likelihood ratio statistic is particularly simple and has good power properties. When identification is strong, the power curve of this conditional likelihood ratio test is essentially equal to the power envelope for similar tests. Monte Carlo simulations also suggest that this test dominates the Anderson- Rubin test and the score test. Dropping the restrictive assumption of disturbances normally distributed with known covariance matrix, approximate conditional tests are found that behave well in small samples even when identification is weak.
Resumo:
O objetivo deste estudo é propor a implementação de um modelo estatístico para cálculo da volatilidade, não difundido na literatura brasileira, o modelo de escala local (LSM), apresentando suas vantagens e desvantagens em relação aos modelos habitualmente utilizados para mensuração de risco. Para estimação dos parâmetros serão usadas as cotações diárias do Ibovespa, no período de janeiro de 2009 a dezembro de 2014, e para a aferição da acurácia empírica dos modelos serão realizados testes fora da amostra, comparando os VaR obtidos para o período de janeiro a dezembro de 2014. Foram introduzidas variáveis explicativas na tentativa de aprimorar os modelos e optou-se pelo correspondente americano do Ibovespa, o índice Dow Jones, por ter apresentado propriedades como: alta correlação, causalidade no sentido de Granger, e razão de log-verossimilhança significativa. Uma das inovações do modelo de escala local é não utilizar diretamente a variância, mas sim a sua recíproca, chamada de “precisão” da série, que segue uma espécie de passeio aleatório multiplicativo. O LSM captou todos os fatos estilizados das séries financeiras, e os resultados foram favoráveis a sua utilização, logo, o modelo torna-se uma alternativa de especificação eficiente e parcimoniosa para estimar e prever volatilidade, na medida em que possui apenas um parâmetro a ser estimado, o que representa uma mudança de paradigma em relação aos modelos de heterocedasticidade condicional.
Resumo:
We develop an affine jump diffusion (AJD) model with the jump-risk premium being determined by both idiosyncratic and systematic sources of risk. While we maintain the classical affine setting of the model, we add a finite set of new state variables that affect the paths of the primitive, under both the actual and the risk-neutral measure, by being related to the primitive's jump process. Those new variables are assumed to be commom to all the primitives. We present simulations to ensure that the model generates the volatility smile and compute the "discounted conditional characteristic function'' transform that permits the pricing of a wide range of derivatives.
Resumo:
This paper investigates the long-term e ects of conditional cash transfers on school attainment and child labor. To this end, we construct a dynamic heterogeneous agent model, calibrate it with Brazilian data, and introduce a policy similar to the Brazilian Bolsa Fam lia. Our results suggest that this type of policy has a very strong impact on educational outcomes, sharply increasing primary school completion. The conditional transfer is also able to reduce the share of working children from 22% to 17%. We then compute the transition to the new steady state and show that the program actually increases child labor over the short run, because the transfer is not enough to completely cover the schooling costs, so children have to work to be able to comply with the program's schooling eligibility requirement. We also evaluate the impacts on poverty, inequality, and welfare.
Resumo:
O objetivo desse trabalho é encontrar uma medida dinâmica de liquidez de ações brasileiras, chamada VNET. Foram utilizados dados de alta frequência para criar um modelo capaz de medir o excesso de compras e vendas associadas a um movimento de preços. Ao variar no tempo, o VNET pode ser entendido como a variação da proporção de agentes informados em um modelo de informação assimétrica. Uma vez estimado, ele pode ser utilizado para prever mudanças na liquidez de uma ação. O VNET tem implicações práticas importantes, podendo ser utilizado por operadores como uma medida estocástica para identificar quais seriam os melhores momentos para operar. Gerentes de risco também podem estimar a deterioração de preço esperada ao se liquidar uma posição, sendo possível analisar suas diversas opções, servindo de base para otimização da execução. Na construção do trabalho encontramos as durações de preço de cada ação e as diversas medidas associadas a elas. Com base nos dados observa-se que a profundidade varia com ágio de compra e venda, com o volume negociado, com o numero de negócios, com a duração de preços condicional e com o seu erro de previsão. Os resíduos da regressão de VNET se mostraram bem comportados o que corrobora a hipótese de que o modelo foi bem especificado. Para estimar a curva de reação do mercado, variamos os intervalos de preço usados na definição das durações.