Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions


Autoria(s): Athanasopoulos, George; Guillen, Osmani Teixeira Carvalho; Issler, João Victor; Vahid, Farshid
Data(s)

27/01/2011

27/01/2011

27/01/2011

Resumo

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.

Identificador

0104-8910

http://hdl.handle.net/10438/7813

Idioma(s)

en_US

Publicador

Fundação Getulio Vargas. Escola de Pós-graduação em Economia

Relação

Ensaios Econômicos;713

Palavras-Chave #Reduced rank models #Model selection criteria #Forecasting accuracy #Análise de regressão #Modelos macroeconômicos #Previsão econômica #Método de Monte Carlo #Modelos de simulação #Economia
Tipo

Working Paper