772 resultados para Passive sensor
Resumo:
The objective of this study was to verify the effect of the passive recovery time following a supramaximal sprint exercise and the incremental exercise test on the lactate minimum speed (LMS). Thirteen sprinters and 12 endurance runners performed the following tests: 1) a maximal 500 m sprint followed by a passive recovery to determine the time to reach the peak blood lactate concentration; 2) after the maximal 500 m sprint, the athletes rested eight mins, and then performed 6 x 800 m incremental test, in order to determine the speed corresponding to the lower blood lactate concentration (LMS1) and; 3) identical procedures of the LMS1, differing only in the passive rest time, that was performed in accordance with the time to peak lactate (LMS2). The time (min) to reach the peak blood lactate concentration was significantly higher in the sprinters (12.76+/-2.83) than in the endurance runners (10.25+/-3.01). There was no significant difference between LMS1 and LMS2, for both endurance (285.7+/-19.9; 283.9+/-17.8 m/min; r= 0.96) and sprint runners (238.0+/-14.1; 239.4+/-13.9 m/min; r= 0.93), respectively. We can conclude that the LMS is not influenced by a passive recovery period longer than eight mins (adjusted according with the time to peak blood lactate), although blood lactate concentration may differ at this speed. The predominant type of training (aerobic or anaerobic) of the athletes does not seem to influence the phenomenon previously described.
Resumo:
A potentiometric sensor constructed from a mixture of 25% (m/m) spinel-type manganese oxide (lambda-MnO2), 50% (m/m) graphite powder and 25% (m/m) mineral oil is used for the determination of lithium ions in a flow injection analysis system. Experimental parameters, such as pH of the carrier solution, flow rate, injection sample volume, and selectivity for Li+ against other alkali and alkaline-earth ions and the response time of this sensor were investigated. The sensor response to lithium ions was linear in the concentration range 8.6 x 10(-5) - 1.0 x 10(-2) mol L-1 with a slope 78.9 +/- 0.3 mV dec(-1) over a wide pH range 7 - 10 (Tris buffer), without interference of other alkali and alkaline-earth metals. For a flow rate of 5.0 mL min(-1) and a injection sample volume of 408.6 muL, the relative standard deviation for repeated injections of a 5.0 x 10(-4) mol L-1 lithium ions was 0.3%.
Resumo:
The characteristics, performance, and application of an electrode, namely, Pt vertical bar Hg vertical bar Hg-2(IBP)(2)vertical bar Graphite, where IBP stands for ibuprofenate ion, are described. This electrode responds to IBP with sensitivity of (58.6 +/- 0.9) mV decade 1 over the range 5.0 x 10(-5)-1.0 x 10(-1) mol L-1 at pH 6.0-9.0 and a detection limit of 3.8 x 10(-5) mol L-1. The electrode is easily constructed at a relatively low cost with fast response time (within 1530 s) and can be used for a period of 5 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for ibuprofen in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used for the direct assay of ibuprofen in commercial tablets by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedure. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The characteristics, performance, and application of an electrode, namely. Pt\Hg\Hg-2(Bzt)(2)\graphite, where Bzt stands for benzoate ion. are described. This electrode responds to Bzt with sensitivity of 57.7 +/- 1.0 mV/decade over the range 5 x 10(-4)-1 x 10(-1) mol l(-1) at pH 6.0-8.0 with a detection limit of 1.6 x 10(-4) mol l(-1). The electrode shows easy construction, fast response rime (between 10-30 s), low-cost, acid excellent response stability (lifetime > 6 months, in continuous use), the proposed sensor displayed good selectivity for benzoate in the presence of several carboxylate and inorganic anions. It was used to determine benzoate in various beverages by means of the standard additions method. The results obtained by using this electrode compared very favorably with those given by the official AOAC spectrophotometric method and by a HPLC procedure as well. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A sensor was fashioned to monitor the volume of nutrient in a solid substrate-based growth media by using electrochemical admittance spectroscopy. Several experimental parameters were investigated (i.e. The use of two- or three-electrode cells, the superficial area of the electrode, the amount of nutrient solution added to the growth media, and the influence of varying the dc and ac potential) to assess how these variables affect the admittance of the system. A linear correlation was observed between the maximum of the imaginary admittance and the volume of nutrient present. The response factor was 2.8 x 10(-5) S cm(-2) ml(-1) and the limit of detection (LOD) was 0.54 ml. The humidity of the growth media does not change the response of the nutrient toward the monitoring measurements. These results demonstrate that the volume of nutrient in this solid substrate-based growth media can be assessed using a ceramic sensor to measure the imaginary admittance. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The characteristics, performance, and application of an electrode, namely, Pt\Hg\Hg-2(PABzt)(2)\ graphite, where PABzt stands for p-aminobenzoate ion, are described. This electrode responds to PABzt with sensivity of (58.1 +/- 1.0) mV per decade over the range 1.0 x 10(-4) to 1.0 x 10(-1) mol l(-1) at pH 6.5-8.0 and a detection limit of 3.2 x 10(-5) mol l(-1). The electrode shows easy construction, fast response time (within 10-30 s), low-cost, and excellent response stability (lifetime greater than 6 months, in continuous use). The proposed sensor displayed good selectivity for p-aminobenzoate in the presence of several substances, especially, concerning carboxylate and inorganic anions. It was used to determine p-aminobenzoate in pharmaceutical formulations by means of the standard additions method. The results obtained by using this electrode compared very favorably with those given by an HPLC procedure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The characteristics, performance, and application of a novel and simple electrode, namely Pt vertical bar Hg vertical bar Hg-2(MF)(2)vertical bar Graphite, where MF stands for mefenamate ion, are described. This electrode responds to MF with sensitivity of (58.9 +/- 0.7) mV decade(-1) over the range 1.0 x 10(-6) to 1.0 x 10(-2) mol L-1 at pH 6.0-9.0 and a detection limit of 6.2 x 10(-7) mol L-1. The electrode is easily constructed at a relatively low cost with fast response time (within 10-25 s) and can be used for a period of 4 months without significant change in its performance characteristics. The proposed sensor displayed good selectivity for mefenamate in the presence of several substances, especially concerning carboxylate and inorganic anions. The potentiometric sensor was successfully applied to the determination of mefenamic acid in pharmaceuticals and human serum samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Composites polymer-ceramic using castor oil-based polyurethane (PU) as non-ferroelectric matrix and Lead Zirconate Titanate (PZT) as ceramic powder have been prepared at thin films form by spin coating. The samples are poled by appropriated electric field to show piezo and pyroelectric activity. The pyroelectric coefficient p(T) at 343 K is obtained to be equal 5.8 X 10(-5) C m(-2) K-1 for a composite with 32 vol.% of ceramic. The figure of merit of this composite is six times higher than of PZT ceramic. The voltage responsivity of the pyroelectric is reduced when the thickness of the sample increases. It was used modulated white light as radiation source to excite the sensor film. The electric signal of the sensor decreases with the light modulation frequency by 1/f. (C) 1999 Elsevier B.V. S.A. All rights reserved.
Resumo:
The design and characteristics of a novel electrochemical system, which uses a drop as a renewable electroanalytical sensor, are described. This article describes the performance of the electrochemical system, the coupling of the experimental arrangement with flow injection technique and a demonstration of its applicability for the measurement of sulfide. The method is based on renewable drops of ferricyanide ions, buffered by borate. The ferrocyanide ions, product of the reaction between ferricyanide and sulfide ions, are oxidized on a platinum microelectrode and the current measured is related to sulfide concentration. The measurements can be done in continuous or static flow mode. In continuous mode, the detection limit is 5.0 x 10(-5) mol L-1.
Resumo:
Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.
Resumo:
The electrical characteristics of oxidized poly(thionaphtheneindole) were investigated as a function of ambient relative humidity (r.h.). The current flowing through a pressed pellet of material between two massive gold electrodes plotted against voltage gives a wave-shaped curve with a halfwave potential at V = similar to 3 V. The current recorded at 4 V (plateau of the wave) is a sigmoidal function of r.h, with the inflexion point at similar to 60%. An interpretation of these findings is given, based on the influence of water on the dielectric constant of the material and on acid-base equilibrium between poly(thionaphtheneindole) and water, from which protons are produced. The behaviour of poly (thionaphtheneindole) as the active component of an amperometric humidity sensor is also reported.
Resumo:
This paper describes a strain gauge-based sensor used for measuring finger force. The theory, design, and sensor construction details are presented. It was constructed using metallic strain gauges and a carefully designed structure which has a protection de-vice that impedes the sensor damage when forces higher than 100 N are applied. Its dimensions are suitable for measuring thumb force, but the same design can be used for constructing smaller sensors for other fingers. It is rugged, presents linear response, good repeatability, resolution of 0.3 N, low hysteresis, and sensitivity of 0.12 V/N. It can be useful in rehabilitation engineering, biomechanics, robotics, and medicine.
Resumo:
The characteristics, performance, and application of an electrode, namely Pt| Hg|Hg-2(DCF)(2)|graphite, where DCF stands for diclofenac ion, are described. This electrode responds to diclofenac with sensitivity of (58.1 +/- 0.8) mV/decade over the range 5.0 x 10(-5) to 1.0 x 10(-2) Mol l(-1) at pH 6.5-9.0 and a detection limit of 3.2 x 10(-5) mol l(-1). The electrode is easily constructed at a relatively low cost with fast response time (within 10-30 s) and can be used for a period of 5 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for diclofenac in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used to determine diclofenac in pharmaceutical preparations by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The J(1)...J(3) is a recent optical method for linear readout of dynamic phase modulation index in homodyne interferometers. In this work, the J(1)... J(3) method is applied to measure voltage in an optical voltage sensor. Based on the classical J(1)...J(4) method, the J(1)... J(3) technique shows to be more stable to phase drift and simpler for implementation than the original one. The sensor dynamic range is enhanced. The agreement between theoretical and experimental results, based on 1/f noise, is demonstrated.