989 resultados para Generalized Hypergeometric Function
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Univ., Dissertation, 2015
Resumo:
Otto-von-Guericke-Universität magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2015
Resumo:
v.22:no.3(1938)
Resumo:
Markowitz portfolio theory (1952) has induced research into the efficiency of portfolio management. This paper studies existing nonparametric efficiency measurement approaches for single period portfolio selection from a theoretical perspective and generalises currently used efficiency measures into the full mean-variance space. Therefore, we introduce the efficiency improvement possibility function (a variation on the shortage function), study its axiomatic properties in the context of Markowitz efficient frontier, and establish a link to the indirect mean-variance utility function. This framework allows distinguishing between portfolio efficiency and allocative efficiency. Furthermore, it permits retrieving information about the revealed risk aversion of investors. The efficiency improvement possibility function thus provides a more general framework for gauging the efficiency of portfolio management using nonparametric frontier envelopment methods based on quadratic optimisation.
Resumo:
In this paper we obtain the necessary and sufficient conditions for embedding results of different function classes. The main result is a criterion for embedding theorems for the so-called generalized Weyl-Nikol'skii class and the generalized Lipschitz class. To define the Weyl-Nikol'skii class, we use the concept of a (λ,β)-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, we give estimates of norms and moduli of smoothness of transformed Fourier series.
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The proposed game is a natural extension of the Shapley and Shubik Assignment Game to the case where each seller owns a set of different objets instead of only one indivisible object. We propose definitions of pairwise stability and group stability that are adapted to our framework. Existence of both pairwise and group stable outcomes is proved. We study the structure of the group stable set and we finally prove that the set of group stable payoffs forms a complete lattice with one optimal group stable payoff for each side of the market.
Resumo:
We analyze situations in which a group of agents (and possibly a designer) have to reach a decision that will affect all the agents. Examples of such scenarios are the location of a nuclear reactor or the siting of a major sport event. To address the problem of reaching a decision, we propose a one-stage multi-bidding mechanism where agents compete for the project by submitting bids. All Nash equilibria of this mechanism are efficient. Moreover, the payoffs attained in equilibrium by the agents satisfy intuitively appealing lower bounds..
Resumo:
There is a relation between the generalized Property R Conjecture and the Schoenflies Conjecture that suggests a new line of attack on the latter. The new approach gives a quick proof of the genus 2 Schoenflies Conjecture and suffices to prove the genus 3 case, even in the absence of new progress on the generalized Property R Conjecture.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.