999 resultados para Compensatory technique
Resumo:
An enhanced technique for interrogating fiber Bragg grating wavelength shift using cascade wavelength division multiplexer (WDM) couplers was proposed and demonstrated. Three WDM couplers which show a linear filter function over the expected wavelength range are employed and cascaded to track Bragg wavelength shifts. Compared with single WDM demodulator. sharper spectral slope is obtained and considerable linear filter range is kept. The static and dynamic strain sensor demodulation experiments demonstrated that the simple passive technique improves the sensitivity approximately two times and keeps 5nm linear demodulation range based on our devices. The cascade WDM coupler demodulation system has high scan rate which can be used to monitor fast vibration.
Resumo:
A practical package technique for temperature independent Fiber Bragg grating sensor is proposed. A uniform strength cantilever with two FBG attached on the upper and lower surfaces was utilized as the key element. By detecting two wavelengths differential output, the applied force can be obtained and temperature effects can be eliminated. Experiment results show the sensor has linear response and output signal uctuates less than 12pm as temperature changes from -10 degrees C to 50 degrees C. The maximum thermal error is less than 0.3% of the full measurement range.
Resumo:
The time delay for light transmission in a coupled microring waveguide structure is calculated from the phase shift of the transmission coefficient obtained by Pade approximation with Baker's algorithm from FDTD Output. The results show that the Pade approximation is a powerful tool for saving time in FDTD simulation.
Resumo:
This paper proposes a smart frequency presetting technique for fast lock-in LC-PLL frequency synthesizer. The technique accurately presets the frequency of VCO with small initial frequency error and greatly reduces the lock-in time. It can automatically compensate preset frequency variation with process and temperature. A 2.4GHz synthesizer with 1MHz reference input was implemented in 0.35 mu m CMOS process. The chip core area is 0.4mm(2). Output frequency of VCO ranges from 2390 to 2600MHz. The measured results show that the typical lock-in time is 3 mu s. The phase noise is -112dBc/Hz at 600KHz offset from center frequency. The test chip consumes current of 22mA that includes the consumption of the I/O buffers.
Resumo:
A technique is presented for ascertaining when a (finite-state) partial process specification is adequate, in the sense of being specified enough, for contexts in which it is to be used. The method relies on the automatic generation of a modal formula from the partial specification; if the remainder of the network satisfies this formula, then any process that meets the specification is guaranteed to ensure correct behavior of the overall system. Using the results, the authors develop compositional proof rules for establishing the correctness of networks of parallel processes and illustrate their use with several examples
Resumo:
An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers. (c) 2006 Optical Society of America
Resumo:
In scattering calculations using the T-matrix method, the calculation of the T-matrix involves multiplication and inversion of matrices. These two types of matrix operations are time-consuming, especially for the matrices with large size. Petrov et al. [D. Petrov, Y. Shkuratov, G. Videen, Opt. Lett. 32 (2007) 1168] proposed an optimized matrix inversion technique, which suggests the inversion of two matrices, each of which contains half the number of rows. This technique reduces time-consumption significantly. On the basis of this approach, we propose another fast calculation technique for scattering in the T-matrix method, which obtains the scattered fields through carrying out only the operations between matrices and the incident field coefficient. Numerical results show that this technique can decrease time-consumption by more than half that of the optimized matrix inversion technique by Petrov et al. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nankai University
Resumo:
A simple method of testing deep aspheric surfaces is presented. The apparatus consists of a Twyman-Green interferometer and a liquid compensatory container. Two lenses, one with spherical surfaces and the other with a spherical surface and an aspheric surface, were tested by using this method. The device is very simple and easy to assemble. (C) 1998 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Residual defects in the overlayer of fully annealed SIMOX material have been studied by means of a chemical etching technique. The etching procedure has been calibrated and an optimum recipe is reported. Observations using optical microscopy and transmission electron microscopy have been used to quantify the defect densities and good agreement between the two techniques has been established, confirming that the optimised chemical etching process can be used with confidence to determine the dislocation density for values < 10(7) cm-2.
Resumo:
The effect of metastable defects caused by light soaking and carrier injection on the transport of carriers in undoped a-Si:H has been investigated by a junction recovery technique. The experiments show that after light soaking or carrier injection the product of mu-p-tau-p decreases, but no detectable change in the distribution of shallow valence band tail states was found.