900 resultados para Advanced virtual reality system
Resumo:
We consider the problem of approximating the 3D scan of a real object through an affine combination of examples. Common approaches depend either on the explicit estimation of point-to-point correspondences or on 2-dimensional projections of the target mesh; both present drawbacks. We follow an approach similar to [IF03] by representing the target via an implicit function, whose values at the vertices of the approximation are used to define a robust cost function. The problem is approached in two steps, by approximating first a coarse implicit representation of the whole target, and then finer, local ones; the local approximations are then merged together with a Poisson-based method. We report the results of applying our method on a subset of 3D scans from the Face Recognition Grand Challenge v.1.0.
Resumo:
There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves) and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.
Resumo:
Three dimensional datasets representing scalar fields are frequently rendered using isosurfaces. For datasets arranged as a cubic lattice, the marching cubes algorithm is the most used isosurface extraction method. However, the marching cubes algorithm produces some ambiguities which have been solved using different approaches that normally imply a more complex process. One of them is to tessellate the cubes into tetrahedra, and by using a similar method (marching tetrahedra), to build the isosurface. The main drawback of other tessellations is that they do not produce the same isosurface topologies as those generated by improved marching cubes algorithms. We propose an adaptive tessellation that, being independent of the isovalue, preserves the topology. Moreover the tessellationallows the isosurface to evolve continuously when the isovalue is changed continuously.
Resumo:
Simbrain is a visually-oriented framework for building and analyzing neural networks. It emphasizes the analysis of networks which control agents embedded in virtual environments, and visualization of the structures which occur in the high dimensional state spaces of these networks. The program was originally intended to facilitate analysis of representational processes in embodied agents, however it is also well suited to teaching neural networks concepts to a broader audience than is traditional for neural networks courses. Simbrain was used to teach a course at a new university, UC Merced, in its inaugural year. Experiences from the course and sample lessons are provided.
Resumo:
In market research, the adoption of interactive virtual reality-techniques could be expected to contain many advantages: artificial lab environments could be designed in a more realistic manner and the consideration of “time to the market”-factors could be improved. On the other hand, with an increasing degree of presence and the notional attendance in a simulated test environment, the market research task could fall prey to the tensing virtual reality adventure. In the following study a 3D-technique is empirically tested for its usability in market research. It will be shown that the interactive 3D-simulation is not biased by the immersion it generates and provides considerably better test results than 2D-stimuli do.
Resumo:
Augmented dice allow players of tabletop games to have the result of a roll be automatically recorded by a computer, e.g., for supporting strategy games. We have built a set of three augmented-dice-prototypes based on radio frequency identification (RFID) technology, which allows us to build robust, cheap, and small augmented dice. Using a corresponding readout infrastructure and a sample application, we have evaluated our approach and show its advantages over other dice augmentation methods discussed in the literature.
Resumo:
In this paper, we investigate how a multilinear model can be used to represent human motion data. Based on technical modes (referring to degrees of freedom and number of frames) and natural modes that typically appear in the context of a motion capture session (referring to actor, style, and repetition), the motion data is encoded in form of a high-order tensor. This tensor is then reduced by using N-mode singular value decomposition. Our experiments show that the reduced model approximates the original motion better then previously introduced PCA-based approaches. Furthermore, we discuss how the tensor representation may be used as a valuable tool for the synthesis of new motions.
Resumo:
This paper proposes a new compression algorithm for dynamic 3d meshes. In such a sequence of meshes, neighboring vertices have a strong tendency to behave similarly and the degree of dependencies between their locations in two successive frames is very large which can be efficiently exploited using a combination of Predictive and DCT coders (PDCT). Our strategy gathers mesh vertices of similar motions into clusters, establish a local coordinate frame (LCF) for each cluster and encodes frame by frame and each cluster separately. The vertices of each cluster have small variation over a time relative to the LCF. Therefore, the location of each new vertex is well predicted from its location in the previous frame relative to the LCF of its cluster. The difference between the original and the predicted local coordinates are then transformed into frequency domain using DCT. The resulting DCT coefficients are quantized and compressed with entropy coding. The original sequence of meshes can be reconstructed from only a few non-zero DCT coefficients without significant loss in visual quality. Experimental results show that our strategy outperforms or comes close to other coders.
Resumo:
The TViews Table Role-Playing Game (TTRPG) is a digital tabletop role-playing game that runs on the TViews table, bridging the separate worlds of traditional role-playing games with the growing area of massively multiplayer online role-playing games. The TViews table is an interactive tabletop media platform that can track the location of multiple tagged objects in real-time as they are moved around its surface, providing a simultaneous and coincident graphical display. In this paper we present the implementation of the first version of TTRPG, with a content set based on the traditional Dungeons & Dragons rule-set. We also discuss the results of a user study that used TTRPG to explore the possible social context of digital tabletop role-playing games.
Resumo:
Transparent and translucent objects involve both light reflection and transmission at surfaces. This paper presents a physically based transmission model of rough surface. The surface is assumed to be locally smooth, and statistical techniques is applied to calculate light transmission through a local illumination area. We have obtained an analytical expression for single scattering. The analytical model has been compared to our Monte Carlo simulations as well as to the previous simulations, and good agreements have been achieved. The presented model has potential applications for realistic rendering of transparent and translucent objects.
Resumo:
Having to carry input devices can be inconvenient when interacting with wall-sized, high-resolution tiled displays. Such displays are typically driven by a cluster of computers. Running existing games on a cluster is non-trivial, and the performance attained using software solutions like Chromium is not good enough. This paper presents a touch-free, multi-user, humancomputer interface for wall-sized displays that enables completely device-free interaction. The interface is built using 16 cameras and a cluster of computers, and is integrated with the games Quake 3 Arena (Q3A) and Homeworld. The two games were parallelized using two different approaches in order to run on a 7x4 tile, 21 megapixel display wall with good performance. The touch-free interface enables interaction with a latency of 116 ms, where 81 ms are due to the camera hardware. The rendering performance of the games is compared to their sequential counterparts running on the display wall using Chromium. Parallel Q3A’s framerate is an order of magnitude higher compared to using Chromium. The parallel version of Homeworld performed on par with the sequential, which did not run at all using Chromium. Informal use of the touch-free interface indicates that it works better for controlling Q3A than Homeworld.
Resumo:
In this paper we propose a simple model for the coupling behavior of the human spine for an inverse kinematics framework. Our spine model exhibits anatomically correct motions of the vertebrae of virtual mannequins by coupling standard swing and revolute joint models. The adjustement of the joints is made with several simple (in)equality constraints, resulting in a reduction of the solution space dimensionality for the inverse kinematics solver. By reducing the solution space dimensionality to feasible spine shapes, we prevent the inverse kinematics algorithm from providing infeasible postures for the spine.In this paper, we exploit how to apply these simple constraints to the human spine by a strict decoupling of the swing and torsion motion of the vertebrae. We demonstrate the validity of our approach on various experiments.
Resumo:
Electronic apppliances are increasingly a part of our everyday lives. In particular, mobile devices, with their reduced dimensions with power rivaling desktop computers, have substantially augmented our communication abilities offering instant availability, anywhere, to everyone. These devices have become essential for human communication but also include a more comprehensive tool set to support productivity and leisure applications. However, the many applications commonly available are not adapted to people with special needs. Rather, most popular devices are targeted at teenagers or young adults with excellent eyesight and coordination. What is worse, most of the commonly used assistive control interfaces are not available in a mobile environment where user's position, accommodation and capacities can vary even widely. To try and address people with special needs new approaches and techniques are sorely needed. This paper presents a control interface to allow tetraplegic users to interact with electronic devices. Our method uses myographic information (Electromyography or EMG) collected from residually controlled body areas. User evaluations validate electromyography as a daily wearable interface. In particular our results show that EMG can be used even in mobility contexts.
Resumo:
Incorporating physical activity and exertion into pervasive gaming applications can provide health and social benefits. Prior research has resulted in several prototypes of pervasive games that encourage exertion as interaction form; however, no detailed critical account of the various approaches exists. We focus on networked exertion games and detail some of our work while identifying the remaining issues towards providing a coherent framework. We outline common lessons learned and use them as the basis for generalizations for the design of networked exertion games. We propose possible directions of further investigation, hoping to provide guidance for future work to facilitate greater awareness and exposure of exertion games and their benefits.
Resumo:
The full-body control of virtual characters is a promising technique for application fields such as Virtual Prototyping. However it is important to assess to what extent the user full-body behavior is modified when immersed in a virtual environment. In the present study we have measured reach durations for two types of task (controlling a simple rigid shape vs. a virtual character) and two types of viewpoint (1st person vs. 3rd person). The paper first describes the architecture of the motion capture approach retained for the on-line full-body reach experiment. We then present reach measurement results performed in a non-virtual environment. They show that the target height parameter leads to reach duration variation of ∓25% around the average duration for the highest and lowest targets. This characteristic is highly accentuated in the virtual world as analyzed in the discussion section. In particular, the discrepancy observed for the first person viewpoint modality suggests to adopt a third person viewpoint when controling the posture of a virtual character in a virtual environment.