977 resultados para :Cr:
La influencia de la ense??anza virtual sobre el pensamiento cr??tico de los profesores en formaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Sediments play a fundamental role in the behaviour of contaminants in aquatic systems. Various processes in sediments, eg adsorption-desorption, oxidation-reduction, ion exchange or biological activities, can cause accumulation or release of metals and anions from the bottom of reservoirs, and have been recently studied in Polish waters [1-3]. Sediment samples from layer A: (1 divided by 6 cm depth in direct contact with bottom water); layer B: (7 divided by 12 cm depth moderate contact); and layer C: (12+ cm depth, in theory an inactive layer) were collected in September 2007 from six sites representing different types of hydrological conditions along the Dobczyce Reservoir (Fig. l). Water depths at the sampling points varied from 3.5 to 21 m. We have focused on studying the distribution and accumulation of several heavy metals (Cr, Pb, Cd, Cu and Zn) in the sediments. The surface, bottom and pore water (extracted from sediments by centrifugation) samples were also collected. Possible relationships between the heavy-metal distribution in sediments and the sediment characteristics (mineralogy, organic matter) as well as the Fe, Mn and Ca content of sediments, have been studied. The 02 concentrations in water samples were also measured. The heavy metals in sediments ranged from 19.0 to 226.3 mg/kg of dry mass (ppm). The results show considerable variations in heavy-metal concentrations between the 6 stations, but not in the individual layers (A, B, C). These variations are related to the mineralogy and chemical composition of the sediments and their pore waters.
Resumo:
The chromium(II) antimony(III) sulphicle, [Cr((NH2CH2CH2)(3)N)]Sb4S7, was synthesised under solvothermal conditions from the reaction of Sb2S3. Cr and S dissolved in tris(2-aminoethyl)amine (tren) at 438 K. The products were characterised by single-crystal X-ray diffraction. elemental analysis, SQUID magnetometry and diffuse reflectance spectroscopy. The compound crystallises in the monoclinic space group P2(1)/n with a = 7.9756(7), b = 10.5191(9), c = 25.880(2) angstrom and beta = 90.864(5)degrees. Alternating SbS33- trigonal pyramids and Sb36 semi-cubes generate Sb4S72- chains which are directly bonded to Cr(tren pendant units. The effective magnetic moment of 4.94(6)mu(B) shows a negligible orbital contribution, in agreement with expectations for Cr(II):d(4) in a (5)A ground state. The measured band gap of 2.14(3) eV is consistent with a correlation between optical band gap and framework density that is established from analysis of a wide range of antimony sulphides. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A new chromium-antimony-sulfide, [Cr(C6H18N4)(SbS3)], has been synthesised under solvothermal conditions from CrCl3. 6H(2)O, Sb2S3 and S in the presence of triethylenetetramine at 433 K and characterised by single-crystal X-ray diffraction, thermogravimetry, elemental analysis and SQUID magnetometry. The structure of [Cr(C6H18N4)(SbS3)] consists of neutral mononuclear chromium-centred complexes, in which the Cr3+ is chelated by one tetradentate triethylenetetramine molecule and a bidentate SbS33- ligand, yielding distorted octahedral coordination. Intermolecular hydrogen bonds link individual molecules into layers within the ac plane. Within a layer, molecules occur in pairs with each member related by a centre of inversion. The Cr...Cr separation within a pair is approximately 6.5 Angstrom. Magnetic susceptibility data reveal Curie-Weiss behaviour with mu(eff) = 3.819(3)/mu(B) and a negligible Weiss constant, indicative of non-interacting Cr3+ ions. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The rutile TiO2(110) surface has been doped with sub-monolayer metallic Cr, which oxidises and donates charge to specific surface Ti ions. X-Ray and ultra violet photoemission spectroscopy and first principles density functional theory with Hubbard U are used to assign the oxidation states of Cr and surface Ti and we find that Cr2+ forms on bridging oxygen ions and a 5-fold coordinated surface Ti atom is reduced to Ti3+ and the Cr ions readily react with oxygen (to Cr3+), which leads to depletion of surface Ti3+ 3d electrons.
Resumo:
Picosecond transient absorption (TA) and time-resolved infrared (TRIR) measurements of rac-[Cr(phen)2(dppz)]3+ (1) intercalated into double-stranded guanine-containing DNA reveal that the excited state is very rapidly quenched. As no evidence was found for the transient electron transfer products, it is proposed that the back electron transfer reaction must be even faster (<3 ps).
Resumo:
Group 6 complexes of the type [M(CO)4(bpy)] (M=Cr, Mo, W) are capable of behaving as electrochemical catalysts for the reduction of CO2 at potentials less negative than those for the reduction of the radical anions [M(CO)4(bpy)].−. Cyclic voltammetric, chronoamperometric and UV/Vis/IR spectro-electrochemical data reveal that five-coordinate [M(CO)3(bpy)]2− are the active catalysts. The catalytic conversion is significantly more efficient in N-methyl-2-pyrrolidone (NMP) compared to tetrahydrofuran, which may reflect easier CO dissociation from 1e−-reduced [M(CO)4(bpy)].− in the former solvent, followed by second electron transfer. The catalytic cycle may also involve [M(CO)4(H-bpy)]− formed by protonation of [M(CO)3(bpy)]2−, especially in NMP. The strongly enhanced catalysis using an Au working electrode is remarkable, suggesting that surface interactions may play an important role, too.
Resumo:
FeM2X4 spinels, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for M = Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+U). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr2X4 and FeMn2S4 are fully normal, FeNi2X4 and FeCo2S4 are intermediate, and FeCo2O4 and FeMn2O4 are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr2X4, FeMn2X4, FeCo2O4 and FeNi2O4 are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When M is filling the tetrahedral positions, the Cr-containing compounds and FeMn2O4 are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn2S4. Our calculations suggest that the spin filtering properties of the FeM2X4 (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.
Resumo:
P>This study aimed to verify the effect of modified section method and laser-welding on the accuracy of fit of ill-fitting commercially pure titanium (cp Ti) and Ni-Cr alloy one-piece cast frameworks. Two sets of similar implant-supported frameworks were constructed. Both groups of six 3-unit implant-supported fixed partial dentures were cast as one-piece [I: Ni-Cr (control) and II: cp Ti] and evaluated for passive fitting in an optical microscope with both screws tightened and with only one screw tightened. All frameworks were then sectioned in the diagonal axis at the pontic region (III: Ni-Cr and IV: cp Ti). Sectioned frameworks were positioned in the matrix (10-Ncm torque) and laser-welded. Passive fitting was evaluated for the second time. Data were submitted to anova and Tukey-Kramer honestly significant difference tests (P < 0 center dot 05). With both screws tightened, one-piece cp Ti group II showed significantly higher misfit values (27 center dot 57 +/- 5 center dot 06 mu m) than other groups (I: 11 center dot 19 +/- 2 center dot 54 mu m, III: 12 center dot 88 +/- 2 center dot 93 mu m, IV: 13 center dot 77 +/- 1 center dot 51 mu m) (P < 0 center dot 05). In the single-screw-tightened test, with readings on the opposite side to the tightened side, Ni-Cr cast as one-piece (I: 58 center dot 66 +/- 14 center dot 30 mu m) was significantly different from cp Ti group after diagonal section (IV: 27 center dot 51 +/- 8 center dot 28 mu m) (P < 0 center dot 05). On the tightened side, no significant differences were found between groups (P > 0 center dot 05). Results showed that diagonally sectioning ill-fitting cp Ti frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves passivity levels of the same frameworks when compared to one-piece cast structures.
Resumo:
Purpose: In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Materials and Methods: Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S-3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (mu TBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereo microscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Results: Significantly lower mu TBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Conclusion: Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin. Keywords: dentin, adhesion, adhesives, laser, ErCr:YSGG.
Resumo:
We have performed a systematic study of the time and temperature dependencies of the electrical resistivity (rho(T, t)) inNd(0.5)Ca(0.5)Mn(1-x)Cr(x)O(3) single crystals with x = 0.02 and 0.07 in order to examine the dynamics of the phase separation. The relaxation effects can be described by the combination of a rapid exponential increase/decrease with a slower logarithmic contribution at longer times. The experimental results suggest the existence of a large temperature window in which huge relaxation effects occur, and the relative fraction of the coexisting phases rapidly changes as a function of time, depending on the initial magnetic state of the sample. The rho(T, t) relaxation measurements were shown to be a suitable tool for probing the dynamical nature of the phase separation, in which magnetically distinct phases compete against each other in a wide temperature range. In addition, the features observed in the rho(T, t) curves were found to be in excellent agreement with both the magnetic properties and the structural transitions observed in these manganites.