996 resultados para pharmaceutical reference pricing
Resumo:
A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm) column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35) and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999).
Resumo:
A simple and sensitive method has been proposed for the determination of sibutramine-HCl in energy drinks, green tea and pharmaceutical formulations using differential pulse voltammetry performed on a hanging mercury drop electrode. In the chosen experimental condition (Mcllvaine pH 4.0 buffer, 50 mV pulse amplitude and 40 mV s-1 scan velocity), sibutramine-HCl presented a reversible behavior and a peak maximum at -80 mV. Detection limit was 0.4 mg L-1 and the working linear range extended up to 33.3 mg L-1 (r = 0.99). Analysis of real and fortified samples enabled recoveries between 91 and 102%. The electroanalytical method was compared with a HPLC method which indicated it accuracy.
Resumo:
Bioethanol is a strategic biofuel in Brazil. Thus, a strong metrological basis for its measurements is required to ensure the quality and promote its exportation. Recently, Inmetro certified a reference material for water content in bioethanol. This paper presents the results of these studies. The characterization, homogeneity, short-term stability and long-term stability uncertainty contributions values were 0.00500, 0.0166, 0.0355 and 0.0391 mg g-1, respectively. The certificated value for water content of bioethanol fuel was (3.65 ± 0.11) mg g-1. This CRM is the first and up to now the unique in the world.
Resumo:
A simple, RP-HPLC method was established for determining moxifloxacin and ketorolac in pharmaceutical formulations. Moxifloxacin, ketorolac and their degradation products were separated using C8 column with methanol and phosphate buffer pH 3.0 (55:45 v/v) as the mobile phase. Detection was performed at 243 nm using a diode array detector. The method was validated using ICH guidelines and was linear in the range 20-140 µg mL-1 for both analytes. Good separation of both the analytes and their degradation products was achieved using this method. The developed method can be applied successfully for the determination of moxifloxacin and ketorolac.
Resumo:
The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.
Resumo:
A simple and fast method for the determination of nimesulide (NI) using flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection at a boron-doped diamond (BDD) electrode was developed. The method was based mainly on the application of a four-potential waveform, E1(det) = -0.8 V / 30 ms, E2(det) = 0.6 V / 30 ms, E3(det) = -0.4 V / 30 ms and E4(cleaning) = -0.45 V / 300 ms versus Ag/AgCl (3.0 mol L-1 KCl). NI was detected at three different electrode potentials, at which the nitro group undergoes different redox reactions. The proposed method was selective and sensitive (detection limit of 81.0 nmol L-1), and successfully applied for the determination of NI in pharmaceutical formulations, yielding similar results to those obtained by the reference method.
Resumo:
This report describes a study about the feasibility of using a conventional digital camera, a cell-phone camera, an optical microscope, and a scanner as digital image capture devices on printed microzones. An array containing nine circular zones was drawn using graphics software and printed onto transparency film by a laser printer. Due to its superior analytical performance, the scanner was chosen for the quantitative determination of Fe2+ in pharmaceutical samples. The data achieved using scanned images did not differ statistically from those attained by the reference spectrophotometric method at the confidence level of 0.05.
Resumo:
In this work, a spectrophotometric methodology was applied in order to determine epinephrine (EP), uric acid (UA), and acetaminophen (AC) in pharmaceutical formulations and spiked human serum, plasma, and urine by using a multivariate approach. Multivariate calibration methods such as partial least squares (PLS) methods and its derivates were used to obtain a model for simultaneous determination of EP, UA and AC with good figures of merit and mixture design was in the range of 1.8 - 35.3, 1.7 - 16.8, and 1.5 - 12.1 µg mL-1. The 2nd derivate PLS showed recoveries of 95.3 - 103.3, 93.3 - 104.0, and 94.0 - 105.5 µg mL-1 for EP, UA, and AC, respectively.
Resumo:
A simple and reliable voltammetric method is presented for the determination of amitriptyline using a boron-doped diamond electrode in 0.1 mol L-1 sulfuric acid solution as the support electrolyte. Under optimized differential pulse voltammetry conditions (modulation time 5 ms, scan rate 70 mV s-1, and pulse amplitude 120 mV), the electrode provides linear responses to amitriptyline in the concentration range 1.05 to 92.60 µmol L-1 and at a detection limit of 0.52 µmol L-1. The proposed method was successfully applied in pharmaceutical formulations, with results similar to those obtained using UV-vis spectrophotometric method as reference (at 95% confidence level), as recommended by the Brazilian Pharmacopoeia.
Resumo:
Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.
Resumo:
A simple, precise, rapid and low-cost potentiometric method for captopril determination in pure form and in pharmaceutical preparations is proposed. Captopril present in tablets containing known quantity of drug was potentiometrically titrated in aqueous solution with NaOH using a glass pH electrode, coupled to an autotitrator. No interferences were observed in the presence of common components of the tablets as lactose, microcrystalline cellulose, croscarmellose sodium, starch and magnesium stearate. The analytical results obtained by applying the proposed method compared very favorably with those obtained by the United States Pharmacopoeia Standard procedure. Recovery of captopril from various tablet dosage formulations range from 98.0 to 102.0%.
Resumo:
In this work, an effective and low-cost method for the determination of sodium or potassium diclofenac is proposed in its pure form and in their pharmaceutical preparations. The method is based on the reaction between diclofenac and tetrachloro-p-benzoquinone (p-chloranil), in methanol medium. This reaction was accelerated by irradiating of reactional mixture with microwave energy (1100 W) during 27 seconds, producing a charge transfer complex with a maximum absorption at 535 nm. The optimal reaction conditions values such as reagent concentration, heating time and stability of the reaction product were determined. Beer's law is obeyed in a concentration range from of 1.25x10-4 to 2.00x10-3 mol l-1 with a correlation coefficient of 0.9993 and molar absorptivity of 0.49 x10³ l mol-1 cm-1. The limit of detection (LOD) was 1.35x10-5 mol l-1 and the limit of quantification (LOQ) was 4.49x10-5 mol l-1. In the presence of the common excipients, such as glucose, lactose, talc, starch, magnesium stearate, sodium sulphite, titanium dioxide, polyethyleneglycol, polyvinylpirrolidone, mannitol and benzilic alcohol no interferences were observed. The analytical results obtained by applying the proposed method compare very favorably with those given by the United States Pharmacopeia standard procedure. Recoveries of diclofenac from various pharmaceutical preparations were within 95.9% to 103.3%, with standard deviations ranging from 0.2% to 1.8%.
Resumo:
This paper describes a method for quantitative spot test analysis of hydrochlorothiazide using diffuse reflectance spectroscopy. The reflectance measurements were performed analyzing the colored compound (l = 585 nm) produced from the reaction between hydrochlorothiazide and p-dimethylaminocinnamaldehyde (PDAC) in acid medium. This reaction occurred on filter paper after heating to 80ºC for 8 minutes. Factorial designs allowed varying multiple reaction factors simultaneously in order to obtain the best reaction conditions. These factors included heating temperature, heating time, acid volume and PDAC volume. The linearity was studied in the range of 3.36x10-2 to 1.01x10-1 mol L-1 with a correlation coefficient of 0.998. The limit of detection was estimated to be 1.32x10² mol L-1. Commercial samples were analyzed using the proposed method and the results were favorably compared with those of the United States Pharmacopeia method, showing that quantitative spot test analysis by diffuse reflectance could be successfully used to determine hydrochlorothiazide in medicines.