960 resultados para Equations, Quadratic.
Resumo:
We use the point-source method (PSM) to reconstruct a scattered field from its associated far field pattern. The reconstruction scheme is described and numerical results are presented for three-dimensional acoustic and electromagnetic scattering problems. We give new proofs of the algorithms, based on the Green and Stratton-Chu formulae, which are more general than with the former use of the reciprocity relation. This allows us to handle the case of limited aperture data and arbitrary incident fields. Both for 3D acoustics and electromagnetics, numerical reconstructions of the field for different settings and with noisy data are shown. For shape reconstruction in acoustics, we develop an appropriate strategy to identify areas with good reconstruction quality and combine different such regions into one joint function. Then, we show how shapes of unknown sound-soft scatterers are found as level curves of the total reconstructed field.
Resumo:
A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, where asset value and population density are greatest, the model spatial resolution required to represent flows through a typical street network (i.e. < 10m) often results in impractical computational cost at the whole city scale. Explicit diffusive storage cell models become very inefficient at such high resolutions, relative to shallow water models, because the stable time step in such schemes scales as a quadratic of resolution. This paper presents the calibration and evaluation of a recently developed new formulation of the LISFLOOD-FP model, where stability is controlled by the Courant–Freidrichs–Levy condition for the shallow water equations, such that, the stable time step instead scales linearly with resolution. The case study used is based on observations during the summer 2007 floods in Tewkesbury, UK. Aerial photography is available for model evaluation on three separate days from the 24th to the 31st of July. The model covered a 3.6 km by 2 km domain and was calibrated using gauge data from high flows during the previous month. The new formulation was benchmarked against the original version of the model at 20 m and 40 m resolutions, demonstrating equally accurate performance given the available validation data but at 67x faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in a significantly more accurate simulation of the drying dynamics compared to that simulated by the coarse resolution models, although estimates of peak inundation depth were similar.
Resumo:
We consider boundary value problems for the N-wave interaction equations in one and two space dimensions, posed for x [greater-or-equal, slanted] 0 and x,y [greater-or-equal, slanted] 0, respectively. Following the recent work of Fokas, we develop an inverse scattering formalism to solve these problems by considering the simultaneous spectral analysis of the two ordinary differential equations in the associated Lax pair. The solution of the boundary value problems is obtained through the solution of a local Riemann–Hilbert problem in the one-dimensional case, and a nonlocal Riemann–Hilbert problem in the two-dimensional case.
Resumo:
In a recent paper [P. Glaister, Conservative upwind difference schemes for compressible flows in a Duct, Comput. Math. Appl. 56 (2008) 1787–1796] numerical schemes based on a conservative linearisation are presented for the Euler equations governing compressible flows of an ideal gas in a duct of variable cross-section, and in [P. Glaister, Conservative upwind difference schemes for compressible flows of a real gas, Comput. Math. Appl. 48 (2004) 469–480] schemes based on this philosophy are presented for real gas flows with slab symmetry. In this paper we seek to extend these ideas to encompass compressible flows of real gases in a duct. This will incorporate the handling of additional terms arising out of the variable geometry and the non-ideal nature of the gas.