Quaternion orders over quadratic integer rings from arithmetic fuchsian groups
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/04/2015
27/04/2015
2012
|
Resumo |
In this paper we show that the quaternion orders OZ[ √ 2] ≃ ( √ 2, −1)Z[ √ 2] and OZ[ √ 3] ≃ (3 + 2√ 3, −1)Z[ √ 3], appearing in problems related to the coding theory [4], [3], are not maximal orders in the quaternion algebras AQ( √ 2) ≃ ( √ 2, −1)Q( √ 2) and AQ( √ 3) ≃ (3 + 2√ 3, −1)Q( √ 3), respectively. Furthermore, we identify the maximal orders containing these orders. |
Formato |
393-404 |
Identificador |
http://www.diogenes.bg/ijam/contents/index.html International Journal of Applied Mathematics, v. 25, n. 3, p. 393-404, 2012. 1311-1728 http://hdl.handle.net/11449/122734 8940498347481982 6300326709529109 |
Idioma(s) |
eng |
Relação |
International Journal of Applied Mathematics |
Direitos |
openAccess |
Palavras-Chave | #Hilbert symbol #arithmetic Fuchsian group #quaternion order #coding theory |
Tipo |
info:eu-repo/semantics/article |