Quaternion orders over quadratic integer rings from arithmetic fuchsian groups


Autoria(s): Carvalho, Edson Donizete de; Andrade, Antonio Aparecido de; Palazzo Júnior, Reginaldo
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/04/2015

27/04/2015

2012

Resumo

In this paper we show that the quaternion orders OZ[ √ 2] ≃ ( √ 2, −1)Z[ √ 2] and OZ[ √ 3] ≃ (3 + 2√ 3, −1)Z[ √ 3], appearing in problems related to the coding theory [4], [3], are not maximal orders in the quaternion algebras AQ( √ 2) ≃ ( √ 2, −1)Q( √ 2) and AQ( √ 3) ≃ (3 + 2√ 3, −1)Q( √ 3), respectively. Furthermore, we identify the maximal orders containing these orders.

Formato

393-404

Identificador

http://www.diogenes.bg/ijam/contents/index.html

International Journal of Applied Mathematics, v. 25, n. 3, p. 393-404, 2012.

1311-1728

http://hdl.handle.net/11449/122734

8940498347481982

6300326709529109

Idioma(s)

eng

Relação

International Journal of Applied Mathematics

Direitos

openAccess

Palavras-Chave #Hilbert symbol #arithmetic Fuchsian group #quaternion order #coding theory
Tipo

info:eu-repo/semantics/article