938 resultados para electrical power equipments
Resumo:
We describe a System-C based framework we are developing, to explore the impact of various architectural and microarchitectural level parameters of the on-chip interconnection network elements on its power and performance. The framework enables one to choose from a variety of architectural options like topology, routing policy, etc., as well as allows experimentation with various microarchitectural options for the individual links like length, wire width, pitch, pipelining, supply voltage and frequency. The framework also supports a flexible traffic generation and communication model. We provide preliminary results of using this framework to study the power, latency and throughput of a 4x4 multi-core processing array using mesh, torus and folded torus, for two different communication patterns of dense and sparse linear algebra. The traffic consists of both Request-Response messages (mimicing cache accesses)and One-Way messages. We find that the average latency can be reduced by increasing the pipeline depth, as it enables higher link frequencies. We also find that there exists an optimum degree of pipelining which minimizes energy-delay product.
Resumo:
We determine the optimal allocation of power between the analog and digital sections of an RF receiver while meeting the BER constraint. Unlike conventional RF receiver designs, we treat the SNR at the output of the analog front end (SNRAD) as a design parameter rather than a specification to arrive at this optimal allocation. We first determine the relationship of the SNRAD to the resolution and operating frequency of the digital section. We then use power models for the analog and digital sections to solve the power minimization problem. As an example, we consider a 802.15.4 compliant low-IF receiver operating at 2.4 GHz in 0.13 μm technology with 1.2 V power supply. We find that the overall receiver power is minimized by having the analog front end provide an SNR of 1.3dB and the ADC and the digital section operate at 1-bit resolution with 18MHz sampling frequency while achieving a power dissipation of 7mW.
Resumo:
In many wireless applications, it is highly desirable to have a fast mechanism to resolve or select the packet from the user with the highest priority. Furthermore, individual priorities are often known only locally at the users. In this paper we introduce an extremely fast, local-information-based multiple access algorithm that selects the best node in 1.8 to 2.1 slots,which is much lower than the 2.43 slot average achieved by the best algorithm known to date. The algorithm, which we call Variable Power Multiple Access Selection (VP-MAS), uses the local channel state information from the accessing nodes to the receiver, and maps the priorities into the receive power.It is inherently distributed and scales well with the number of users. We show that mapping onto a discrete set of receive power levels is optimal, and provide a complete characterization for it. The power levels are chosen to exploit packet capture that inherently occurs in a wireless physical layer. The VP-MAS algorithm adjusts the expected number of users that contend in each step and their respective transmission powers, depending on whether previous transmission attempts resulted in capture,idle channel, or collision.
Resumo:
Motion Estimation is one of the most power hungry operations in video coding. While optimal search (eg. full search)methods give best quality, non optimal methods are often used in order to reduce cost and power. Various algorithms have been used in practice that trade off quality vs. complexity. Global elimination is an algorithm based on pixel averaging to reduce complexity of motion search while keeping performance close to that of full search. We propose an adaptive version of the global elimination algorithm that extracts individual macro-block features using Hadamard transform to optimize the search. Performance achieved is close to the full search method and global elimination. Operational complexity and hence power is reduced by 30% to 45% compared to global elimination method.
Resumo:
A low power keeper circuit using the concept of rate sensing has been proposed. The proposed technique reduces the amount of short circuit power dissipation in the domino gate by 70% compared to the conventional keeper technique. Also the total power-delay product is 26% lower compared to the previously reported techniques. The process tracking capability of the design enables the domino gate to achieve uniform delay across different process corners. This reduces the amount of short circuit power dissipation that occurs in the cascaded domino gates by 90%. The use of the proposed technique in the read path of a register file reduces the energy requirement by 26% as compared to the other keeper techniques. The proposed technique has been prototyped in 130nm CMOS technology.
Resumo:
The conventional metal oxide semiconductor field effect transistor (MOSFET)may not be suitable for future low standby power (LSTP) applications due to its high off-state current as the sub-threshold swing is theoretically limited to 60mV/decade. Tunnel field effect transistor (TFET) based on gate controlled band to band tunneling has attracted attention for such applications due to its extremely small sub-threshold swing (much less than 60mV/decade). This paper takes a simulation approach to gain some insight into its electrostatics and the carrier transport mechanism. Using 2D device simulations, a thorough study and analysis of the electrical parameters of the planar double gate TFET is performed. Due to excellent sub-threshold characteristics and a reverse biased structure, it offers orders of magnitude less leakage current compared to the conventional MOSFET. In this work, it is shown that the device can be scaled down to channel lengths as small as 30 nm without affecting its performance. Also, it is observed that the bulk region of the device plays a major role in determining the sub-threshold characteristics of the device and considerable improvement in performance (in terms of ION/IOFF ratio) can be achieved if the thickness of the device is reduced. An ION/IOFF ratio of 2x1012 and a minimum point sub-threshold swing of 22mV/decade is obtained.
Resumo:
We consider a joint power control and transmission scheduling problem in wireless networks with average power constraints. While the capacity region of a wireless network is convex, a characterization of this region is a hard problem. We formulate a network utility optimization problem involving time-sharing across different "transmission modes," where each mode corresponds to the set of power levels used in the network. The structure of the optimal solution is a time-sharing across a small set of such modes. We use this structure to develop an efficient heuristic approach to finding a suboptimal solution through column generation iterations. This heuristic approach converges quite fast in simulations, and provides a tool for wireless network planning.
Resumo:
We present a statistical methodology for leakage power estimation, due to subthreshold and gate tunneling leakage, in the presence of process variations, for 65 nm CMOS. The circuit leakage power variations is analyzed by Monte Carlo (MC) simulations, by characterizing NAND gate library. A statistical “hybrid model” is proposed, to extend this methodology to a generic library. We demonstrate that hybrid model based statistical design results in up to 95% improvement in the prediction of worst to best corner leakage spread, with an error of less than 0.5%, with respect to worst case design.
Resumo:
We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Thetaopt bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form dopt(Pmacrt) x Thetaopt with dopt scaling as Pmacrt 1 /eta, where Pmacrt is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then pro- - vide a simple characterisation of the optimal operating point.
Resumo:
A low-power frequency multiplication technique, developed for ZigBee (IEEE 802.15.4) like applications is presented. We have provided an estimate for the power consumption for a given output voltage swing using our technique. The advantages and disadvantages which determine the application areas of the technique are discussed. The issues related to design, layout and process variation are also addressed. Finally, a design is presented for operation in 2.405-2.485-GHz band of ZigBee receiver. SpectreRF simulations show 30% improvement in efficiency for our circuit with regard to conversion of DC bias current to output amplitude, against a LC-VCO. To establish the low-power credentials, we have compared our circuit with an existing technique; our circuit performs better with just 1/3 of total current from supply, and uses one inductor as against three in the latter case. A test chip was implemented in UMC 0.13-mum RF process with spiral on-chip inductors and MIM (metal-insulator-metal) capacitor option.