943 resultados para Spectral tuning
Resumo:
Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.
Resumo:
A tandem mass spectral database system consists of a library of reference spectra and a search program. State-of-the-art search programs show a high tolerance for variability in compound-specific fragmentation patterns produced by collision-induced decomposition and enable sensitive and specific 'identity search'. In this communication, performance characteristics of two search algorithms combined with the 'Wiley Registry of Tandem Mass Spectral Data, MSforID' (Wiley Registry MSMS, John Wiley and Sons, Hoboken, NJ, USA) were evaluated. The search algorithms tested were the MSMS search algorithm implemented in the NIST MS Search program 2.0g (NIST, Gaithersburg, MD, USA) and the MSforID algorithm (John Wiley and Sons, Hoboken, NJ, USA). Sample spectra were acquired on different instruments and, thus, covered a broad range of possible experimental conditions or were generated in silico. For each algorithm, more than 30,000 matches were performed. Statistical evaluation of the library search results revealed that principally both search algorithms can be combined with the Wiley Registry MSMS to create a reliable identification tool. It appears, however, that a higher degree of spectral similarity is necessary to obtain a correct match with the NIST MS Search program. This characteristic of the NIST MS Search program has a positive effect on specificity as it helps to avoid false positive matches (type I errors), but reduces sensitivity. Thus, particularly with sample spectra acquired on instruments differing in their Setup from tandem-in-space type fragmentation, a comparably higher number of false negative matches (type II errors) were observed by searching the Wiley Registry MSMS.
Resumo:
A 318-metre-long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 5011-1 in Lake El’gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chronostratigraphic methods. The 12 km wide lake is sited off-centre in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the earth’s magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest geomagnetic Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be defined. It could be shown that deposition of sediments in Lake El’gygytgyn occurred in concert with global climatic cycles. The upper �160m of sediments represent the past 3.3 Ma, equivalent to sedimentation rates of 4 to 5 cm ka−1, whereas the lower 160m represent just the first 0.3 Ma after the impact, equivalent to sedimentation rates in the order of 45 cm ka−1. This study also provides orbitally tuned ages for a total of 8 tephras deposited in Lake El’gygytgyn.
Resumo:
Over the last ~20 years, soil spectral libraries storing near-infrared reflectance (NIR) spectra from diverse soil samples have been built for many places, since almost 10 years also for Tajikistan. Many calibration approaches have been reported and used for prediction from large and heterogeneous libraries, but most are hampered by the high diversity of the soils, where the mineral background is heavily influencing spectral features. In such cases, local learning strategies have the advantage of building locally adapted calibrations, which can deal better with nonlinearities. Therefore, it was our major aim to identify the most efficient approach to develop an accurate and stable locally weigthed calibration model using a spectral library compiled over the past years. Keywords: Tajikistan, Near-Infrared spectroscopy (NIRS), soil organic carbon, locally weighted regression, regional and local spectral library.
Resumo:
We solve two inverse spectral problems for star graphs of Stieltjes strings with Dirichlet and Neumann boundary conditions, respectively, at a selected vertex called root. The root is either the central vertex or, in the more challenging problem, a pendant vertex of the star graph. At all other pendant vertices Dirichlet conditions are imposed; at the central vertex, at which a mass may be placed, continuity and Kirchhoff conditions are assumed. We derive conditions on two sets of real numbers to be the spectra of the above Dirichlet and Neumann problems. Our solution for the inverse problems is constructive: we establish algorithms to recover the mass distribution on the star graph (i.e. the point masses and lengths of subintervals between them) from these two spectra and from the lengths of the separate strings. If the root is a pendant vertex, the two spectra uniquely determine the parameters on the main string (i.e. the string incident to the root) if the length of the main string is known. The mass distribution on the other edges need not be unique; the reason for this is the non-uniqueness caused by the non-strict interlacing of the given data in the case when the root is the central vertex. Finally, we relate of our results to tree-patterned matrix inverse problems.
Resumo:
We obtain eigenvalue enclosures and basisness results for eigen- and associated functions of a non-self-adjoint unbounded linear operator pencil A−λBA−λB in which BB is uniformly positive and the essential spectrum of the pencil is empty. Both Riesz basisness and Bari basisness results are obtained. The results are applied to a system of singular differential equations arising in the study of Hagen–Poiseuille flow with non-axisymmetric disturbances.
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
Electronic tuning effects of substituents at the 4- and 8-positions of benzothiadiazole (BTD) within the fused tetrathiafulvalene–BTD donor–acceptor dyad have been studied. The electron acceptor strength of BTD is greatly increased by replacing Br with CN groups, extending the optical absorption of the small dyad into the near-IR region and importantly, the charge transport can be switched from p-type to ambipolar behaviour.
Resumo:
We study the tuning curve of entangled photons generated by type-0 spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We demonstrate the X-shaped spatiotemporal structure of the spectrum by means of measurements and numerical simulations. Experiments for different pump waists, crystal temperatures, and crystal lengths are in good agreement with numerical simulations.
Resumo:
An ascent to altitude has been shown to result in more central apneas and a shift towards lighter sleep in healthy individuals. This study employs spectral analysis to investigate the impact of respiratory disturbances (central/obstructive apnea and hypopnea or periodic breathing) at moderate altitude on the sleep electroencephalogram (EEG) and to compare EEG changes resulting from respiratory disturbances and arousals. Data were collected from 51 healthy male subjects who spent 1 night at moderate altitude (2590 m). Power density spectra of Stage 2 sleep were calculated in a subset (20) of these participants with sufficient artefact-free data for (a) epochs with respiratory events without an accompanying arousal, (b) epochs containing an arousal and (c) epochs of undisturbed Stage 2 sleep containing neither arousal nor respiratory events. Both arousals and respiratory disturbances resulted in reduced power in the delta, theta and spindle frequency range and increased beta power compared to undisturbed sleep. The similarity of the EEG changes resulting from altitude-induced respiratory disturbances and arousals indicates that central apneas are associated with micro-arousals, not apparent by visual inspection of the EEG. Our findings may have implications for sleep in patients and mountain tourists with central apneas and suggest that respiratory disturbances not accompanied by an arousal may, none the less, impact sleep quality and impair recuperative processes associated with sleep more than previously believed.
Resumo:
Artificial pancreas is in the forefront of research towards the automatic insulin infusion for patients with type 1 diabetes. Due to the high inter- and intra-variability of the diabetic population, the need for personalized approaches has been raised. This study presents an adaptive, patient-specific control strategy for glucose regulation based on reinforcement learning and more specifically on the Actor-Critic (AC) learning approach. The control algorithm provides daily updates of the basal rate and insulin-to-carbohydrate (IC) ratio in order to optimize glucose regulation. A method for the automatic and personalized initialization of the control algorithm is designed based on the estimation of the transfer entropy (TE) between insulin and glucose signals. The algorithm has been evaluated in silico in adults, adolescents and children for 10 days. Three scenarios of initialization to i) zero values, ii) random values and iii) TE-based values have been comparatively assessed. The results have shown that when the TE-based initialization is used, the algorithm achieves faster learning with 98%, 90% and 73% in the A+B zones of the Control Variability Grid Analysis for adults, adolescents and children respectively after five days compared to 95%, 78%, 41% for random initialization and 93%, 88%, 41% for zero initial values. Furthermore, in the case of children, the daily Low Blood Glucose Index reduces much faster when the TE-based tuning is applied. The results imply that automatic and personalized tuning based on TE reduces the learning period and improves the overall performance of the AC algorithm.
Resumo:
This minireview highlights three aspects of our recent work in the area of sugar modified oligonucleotide analogues. It provides an overview over recent results on the conformationally constrained analogue tricyclo-DNA with special emphasis of its antisense properties, it summarizes results on triple-helix forming oligodeoxynucleotides containing pyrrolidino-nucleosides with respect to DNA recognition via the dual recognition mode, and it highlights the advantageous application of the orthogonal oligonucleotidic pairing system homo-DNA in molecular beacons for DNA diagnostics