Spectral bounds and basis results for non-self-adjoint pencils, with an application to Hagen-Poiseuille flow
Data(s) |
01/05/2013
|
---|---|
Resumo |
We obtain eigenvalue enclosures and basisness results for eigen- and associated functions of a non-self-adjoint unbounded linear operator pencil A−λBA−λB in which BB is uniformly positive and the essential spectrum of the pencil is empty. Both Riesz basisness and Bari basisness results are obtained. The results are applied to a system of singular differential equations arising in the study of Hagen–Poiseuille flow with non-axisymmetric disturbances. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/47947/1/JFA-13.pdf Marletta, Marco; Tretter, Christiane (2013). Spectral bounds and basis results for non-self-adjoint pencils, with an application to Hagen-Poiseuille flow. Journal of functional analysis, 264(9), pp. 2136-2176. Elsevier 10.1016/j.jfa.2013.02.008 <http://dx.doi.org/10.1016/j.jfa.2013.02.008> doi:10.7892/boris.47947 info:doi:10.1016/j.jfa.2013.02.008 urn:issn:0022-1236 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://boris.unibe.ch/47947/ |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Marletta, Marco; Tretter, Christiane (2013). Spectral bounds and basis results for non-self-adjoint pencils, with an application to Hagen-Poiseuille flow. Journal of functional analysis, 264(9), pp. 2136-2176. Elsevier 10.1016/j.jfa.2013.02.008 <http://dx.doi.org/10.1016/j.jfa.2013.02.008> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |