Spectral bounds and basis results for non-self-adjoint pencils, with an application to Hagen-Poiseuille flow


Autoria(s): Marletta, Marco; Tretter, Christiane
Data(s)

01/05/2013

Resumo

We obtain eigenvalue enclosures and basisness results for eigen- and associated functions of a non-self-adjoint unbounded linear operator pencil A−λBA−λB in which BB is uniformly positive and the essential spectrum of the pencil is empty. Both Riesz basisness and Bari basisness results are obtained. The results are applied to a system of singular differential equations arising in the study of Hagen–Poiseuille flow with non-axisymmetric disturbances.

Formato

application/pdf

Identificador

http://boris.unibe.ch/47947/1/JFA-13.pdf

Marletta, Marco; Tretter, Christiane (2013). Spectral bounds and basis results for non-self-adjoint pencils, with an application to Hagen-Poiseuille flow. Journal of functional analysis, 264(9), pp. 2136-2176. Elsevier 10.1016/j.jfa.2013.02.008 <http://dx.doi.org/10.1016/j.jfa.2013.02.008>

doi:10.7892/boris.47947

info:doi:10.1016/j.jfa.2013.02.008

urn:issn:0022-1236

Idioma(s)

eng

Publicador

Elsevier

Relação

http://boris.unibe.ch/47947/

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Marletta, Marco; Tretter, Christiane (2013). Spectral bounds and basis results for non-self-adjoint pencils, with an application to Hagen-Poiseuille flow. Journal of functional analysis, 264(9), pp. 2136-2176. Elsevier 10.1016/j.jfa.2013.02.008 <http://dx.doi.org/10.1016/j.jfa.2013.02.008>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed