929 resultados para Multivariate Adaptive Regression Splines (MARS)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the Wald, score, and likelihood ratio asymptotic test statistics, we analyze a multivariate null intercept errors-in-variables regression model, where the explanatory and the response variables are subject to measurement errors, and a possible structure of dependency between the measurements taken within the same individual are incorporated, representing a longitudinal structure. This model was proposed by Aoki et al. (2003b) and analyzed under the bayesian approach. In this article, considering the classical approach, we analyze asymptotic test statistics and present a simulation study to compare the behavior of the three test statistics for different sample sizes, parameter values and nominal levels of the test. Also, closed form expressions for the score function and the Fisher information matrix are presented. We consider two real numerical illustrations, the odontological data set from Hadgu and Koch (1999), and a quality control data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partition of Unity Implicits (PUI) has been recently introduced for surface reconstruction from point clouds. In this work, we propose a PUI method that employs a set of well-observed solutions in order to produce geometrically pleasant results without requiring time consuming or mathematically overloaded computations. One feature of our technique is the use of multivariate orthogonal polynomials in the least-squares approximation, which allows the recursive refinement of the local fittings in terms of the degree of the polynomial. However, since the use of high-order approximations based only on the number of available points is not reliable, we introduce the concept of coverage domain. In addition, the method relies on the use of an algebraically defined triangulation to handle two important tasks in PUI: the spatial decomposition and an adaptive polygonization. As the spatial subdivision is based on tetrahedra, the generated mesh may present poorly-shaped triangles that are improved in this work by means a specific vertex displacement technique. Furthermore, we also address sharp features and raw data treatment. A further contribution is based on the PUI locality property that leads to an intuitive scheme for improving or repairing the surface by means of editing local functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with asymptotic results on a multivariate ultrastructural errors-in-variables regression model with equation errors Sufficient conditions for attaining consistent estimators for model parameters are presented Asymptotic distributions for the line regression estimators are derived Applications to the elliptical class of distributions with two error assumptions are presented The model generalizes previous results aimed at univariate scenarios (C) 2010 Elsevier Inc All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this work is to study the behaviour of Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-32] adjusted likelihood ratio statistic in testing simple hypothesis in a new class of regression models proposed here. The proposed class of regression models considers Dirichlet distributed observations, and the parameters that index the Dirichlet distributions are related to covariates and unknown regression coefficients. This class is useful for modelling data consisting of multivariate positive observations summing to one and generalizes the beta regression model described in Vasconcellos and Cribari-Neto [Vasconcellos, K.L.P., Cribari-Neto, F., 2005. Improved maximum likelihood estimation in a new class of beta regression models. Brazilian journal of Probability and Statistics 19,13-31]. We show that, for our model, Skovgaard`s adjusted likelihood ratio statistics have a simple compact form that can be easily implemented in standard statistical software. The adjusted statistic is approximately chi-squared distributed with a high degree of accuracy. Some numerical simulations show that the modified test is more reliable in finite samples than the usual likelihood ratio procedure. An empirical application is also presented and discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several Brazilian commercial gasoline physicochemical parameters, such as relative density, distillation curve (temperatures related to 10%, 50% and 90% of distilled volume, final boiling point and residue), octane numbers (motor and research octane number and anti-knock index), hydrocarbon compositions (olefins, aromatics and saturates) and anhydrous ethanol and benzene content was predicted from chromatographic profiles obtained by flame ionization detection (GC-FID) and using partial least square regression (PLS). GC-FID is a technique intensively used for fuel quality control due to its convenience, speed, accuracy and simplicity and its profiles are much easier to interpret and understand than results produced by other techniques. Another advantage is that it permits association with multivariate methods of analysis, such as PLS. The chromatogram profiles were recorded and used to deploy PLS models for each property. The standard error of prediction (SEP) has been the main parameter considered to select the "best model". Most of GC-FID-PLS results, when compared to those obtained by the Brazilian Government Petroleum, Natural Gas and Biofuels Agency - ANP Regulation 309 specification methods, were very good. In general, all PLS models developed in these work provide unbiased predictions with lows standard error of prediction and percentage average relative error (below 11.5 and 5.0, respectively). (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A portable or field test method for simultaneous spectrophotometric determination of calcium and magnesium in water using multivariate partial least squares (PLS) calibration methods is proposed. The method is based on the reaction between the analytes and methylthymol blue at pH 11. The spectral information was used as the X-block, and the Ca(II) and Mg(II) concentrations obtained by a reference technique (ICP-AES) were used as the Y-block. Two series of analyses were performed, with a month's difference between them. The first series was used as the calibration set and the second one as the validation set. Multivariate statistical process control (MSPC) techniques, based on statistics from principal component models, were used to study the features and evolution with time of the spectral signals. Signal standardization was used to correct the deviations between series. Method validation was performed by comparing the predictions of the PLS model with the reference Ca(II) and Mg(II) concentrations determined by ICP-AES using the joint interval test for the slope and intercept of the regression line with errors in both axes. (C) 1998 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper is reported the use of the chromatographic profiles of volatiles to determine disease markers in plants - in this case, leaves of Eucalyptus globulus contaminated by the necrotroph fungus Teratosphaeria nubilosa. The volatile fraction was isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography-fast quadrupole mass spectrometry (GC. ×. GC-qMS). For the correlation between the metabolic profile described by the chromatograms and the presence of the infection, unfolded-partial least squares discriminant analysis (U-PLS-DA) with orthogonal signal correction (OSC) were employed. The proposed method was checked to be independent of factors such as the age of the harvested plants. The manipulation of the mathematical model obtained also resulted in graphic representations similar to real chromatograms, which allowed the tentative identification of more than 40 compounds potentially useful as disease biomarkers for this plant/pathogen pair. The proposed methodology can be considered as highly reliable, since the diagnosis is based on the whole chromatographic profile rather than in the detection of a single analyte. © 2013 Elsevier B.V..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic eases. Methods: The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus data-bases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Results: Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P < .001), acute apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Conclusions: Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)