Multivariate calibrations in gas chromatographic profiles for prediction of several physicochemical parameters of Brazilian commercial gasoline


Autoria(s): Flumignan, Danilo Luiz; Ferreira, Fabricio de Oliveira; Tininis, Aristeu Gomes; Oliveira, Jose Eduardo de
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

15/05/2008

Resumo

Several Brazilian commercial gasoline physicochemical parameters, such as relative density, distillation curve (temperatures related to 10%, 50% and 90% of distilled volume, final boiling point and residue), octane numbers (motor and research octane number and anti-knock index), hydrocarbon compositions (olefins, aromatics and saturates) and anhydrous ethanol and benzene content was predicted from chromatographic profiles obtained by flame ionization detection (GC-FID) and using partial least square regression (PLS). GC-FID is a technique intensively used for fuel quality control due to its convenience, speed, accuracy and simplicity and its profiles are much easier to interpret and understand than results produced by other techniques. Another advantage is that it permits association with multivariate methods of analysis, such as PLS. The chromatogram profiles were recorded and used to deploy PLS models for each property. The standard error of prediction (SEP) has been the main parameter considered to select the "best model". Most of GC-FID-PLS results, when compared to those obtained by the Brazilian Government Petroleum, Natural Gas and Biofuels Agency - ANP Regulation 309 specification methods, were very good. In general, all PLS models developed in these work provide unbiased predictions with lows standard error of prediction and percentage average relative error (below 11.5 and 5.0, respectively). (C) 2007 Elsevier B.V. All rights reserved.

Formato

53-60

Identificador

http://dx.doi.org/10.1016/j.chemolab.2007.12.003

Chemometrics and Intelligent Laboratory Systems. Amsterdam: Elsevier B.V., v. 92, n. 1, p. 53-60, 2008.

0169-7439

http://hdl.handle.net/11449/26339

10.1016/j.chemolab.2007.12.003

WOS:000256869800006

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Chemometrics and Intelligent Laboratory Systems

Direitos

closedAccess

Palavras-Chave #gas chromatography #partial least squares regression #Brazilian commercial gasoline #quality control
Tipo

info:eu-repo/semantics/article