972 resultados para domain ontology
Resumo:
Follicle consists of an oocyte and a lot of surrounding follicular cells, and significant interactions exist between the oocyte and the somatic cells. In this study, a novel cDNA has been screened from a subtractive cDNA library between tail bud embryos and blastula embryos in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides). Its full-length cDNA is 821 bp, and has an ORF of 414 by for encoding a peptide of 137 aa, which shows 38%, 37%, 33%, and 33% homology with 4 putative proteins screened from zebrafish (Danio rerio). Conserved domain search in NCBI reveals a single C2 domain existing in the C2 domain superfamily proteins, and has only 7 beta strands in comparison with 8 beta strands of C2 domains in other C2 domain superfamily proteins. Artificial sex reversal, RT-PCR analysis and Western blot detection demonstrated ovary-specific expression of the C2 domain factor, and therefore the novel gene was designated as E. coioides ovary-specific C2 domain factor, EcOC2 factor. Moreover, predominant expression of EcOC2 factor was further revealed in grouper mature ovary, and its strong immunofluorescence signals were located between granulosa cells and oocyte zona radiata in grouper mature follicles. The data indicate that the novel EcOC2 factor might be a main component that associates between granulosa cells and the oocyte during oocyte maturation, and might play significant roles in regulating oocyte maturation and ovulation. Further studies on its developmental behaviour and physiological functions will elucidate the interactions between oocyte and the surrounding somatic cells and the underlying molecular mechanisms. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Several studies have suggested that Otu domain had de-ubiquitinating activity and Tudor domain was important for the formation of germ cells. Here, we reported a novel zebrafish ovary-specific gene containing Otu and Tudor domain, z-otu, which was expressed at stages I-III oocytes and embryonic stages from zygotes to early blastula during embryonic cells maintained their totipotency. Therefore, z-otu might link the ubiquitin signaling pathway to early oogenesis and maintaining the totipotency of embryonic cell. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
© 2014, Springer-Verlag London. Engineering changes are essential for any product development, and their management has become a crucial discipline. Research in engineering change management has brought about some methods and tools to support dealing with changes. This work extends the change prediction method through incorporation of a function–behaviour–structure (FBS) scheme. These additional levels of detail provide the rationales for change propagation and allow a more proactive management of changes. First, we develop the ontology of this method based on a comprehensive comparison of three seminal functional reasoning schemes. Then, we demonstrate the FBS Linkage technique by applying it to a diesel engine. Finally, we evaluate the method.
Resumo:
This paper presents a wavelength coded optical timedomain reflectometry based on optical heterodyne technique. In this scheme, the probe and reference optical pulses have different wavelengths. This enables optical heterodyne detection to be used to improve the system performances significantly. We demonstrate a spatial resolution of 2.5 m within a range of 60 km in weak-reflection signal detection and direct observation of Brillouin scattering over a long optical fiber, suggesting online fiber sensing possible. The principle of wavelength coding is applicable to other systems like lidar and radar to increase receiver sensitivity and simplify system structure.
Resumo:
We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.
Resumo:
Modes in a microsquare resonator slab with strong vertical waveguide consisting of air/semiconductor/air are analyzed by three-dimensional (3-D) finite-difference time-domain simulation, and compared with that of two-dimensional (2-D) simulation under effective index approximation. Mode frequencies and field distributions inside the resonator obtained by the 3-D simulation are in good agreement with those of the 2-D approximation. However, field distributions at the boundary of the resonator obtained by 3-D simulation are different from that of the 2-D simulation, especially the vertical field distribution near the boundary is great different from that of the slab waveguide, which is used in the effective index approximation. Furthermore the quality factors obtained by 3-D simulation are much larger. than that by 2-D simulation for the square resonator slab with the strong vertical waveguide.
Resumo:
An add-drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add-drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01 mu m. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1. (c) 2007 Optical Society of America.
Resumo:
Mode characteristics of a strongly confined square cavity suspended in air via a pedestal on the substrate are investigated by a three-dimensional finite-difference time-domain technique. The mode wavelengths and mode quality factors (Q factors) are calculated as the functions of the size of the pedestal and the slope angle 0 of the sidewalls of the square slab, respectively For the square slab with side length of 2 mu m, thickness of 0.2 mu m, and refractive index of 3.4, on a square pedestal with refractive index of 3.17, the Q factor of the whispering-gallery (WG)-like mode transverse-electric TE(3.5)o first increases with the side length b of the square pedestal and then quickly decreases as b > 0.4 mu m, but the Q factor of the WG-like mode TE(4.6)o drops down quickly as b > 0.2 mu m, owing to their different symmetries. The results indicate that the pedestal can also result in mode selection in the WG-like modes. In addition, the numerical results show that the Q factors decrease 50% as the slope angle of the sidewalls varies from 90 degrees to 80 degrees. The mode characteristics of WG-like modes in the square cavity with a rectangular pedestal are also discussed. The results show that the nonsquare pedestal largely degrades the WG-like modes. (c) 2006 Optical Society of America
Resumo:
The mode characteristics of a three-dimensional (3D) microdisk with a vertical refractive index distribution of n(2)/3.4/n(2) are investigated by the S-matrix method and 3D finite-difference time-domain (FDTD) technique. For the microdisk with a thickness of 0.2 mu m. and a radius of 1 mu m, the mode wavelengths and quality factors for the HE7,1 mode obtained by 3D FDTD simulation and the S-matrix method are in good agreement as n(2) increases from 1.0 to 2.6. But the Q factor obtained by the 3D FDTD rapidly decreases from 1.12 X 10(4) to 379 as n2 increases from 2.65 to 2.8 owing to the vertical radiation losses, which cannot be predicted by the proposed S-matrix method. The comparisons also show that quality factors obtained from the analytical solution of two-dimensional microdisks under the effective index approximation are five to seven times smaller than those of the 3D FDTD as n(2) = 1 and R = 1 mu m. (c) 2006 Optical Society of America.
Resumo:
Quality factor enhancement due to mode coupling is observed in a three-dimensional microdisk resonator. The microdisk, which is vertically sandwiched between air and a substrate, with a radius of 1 mu m, a thickness of 0.2 mu m, and a refractive index of 3.4, is considered in a finite-difference time-domain (FDTD) numerical simulation. The mode quality factor of the fundamental mode HE71 decreases with an increase of the refractive index of the substrate, n(sub), from 2.0 to 3.17. However, the mode quality factor of the first-order mode HE72 reaches a peak value at n(sub) = 2.7 because of the mode coupling between the fundamental and the first-order modes. The variation of mode field distributions due to the mode coupling is also observed. This mechanism may be used to realize high-quality-factor modes in microdisks with high-refractive-index substrates. (c) 2006 Optical Society of America.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
We have observed the transition from static to dynamic electric field domain formation induced by a transverse magnetic field and the sample temperature in a doped GaAs/AlAs superlattice. The observations can be very well explained by a general analysis of instabilities and oscillations of the sequential tunnelling current in superlattices based solely on the magnitude of the negative differential resistance region in the tunnelling characteristic of a single barrier. Both increasing magnetic field and sample temperature change the negative differential resistance and cause the transition between static and dynamic electric field domain formation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A dynamic dc voltage band was found emerging from each sawtooth-like branch of the current-voltage characteristics of a doped GaAs/AlAs superlattice in the transition process from static to dynamic electric-field domain formation caused by increasing the sample temperature. As the temperature increases, these dynamic dc voltage bands expand within each sawtooth-like branch, squeeze out the static regions, and join up together to turn the whole plateau into dynamic electric-field domain formation. These results are well explained by a general analysis of stability of the sequential tunneling current in superlattices. (C) 1999 American Institute of Physics. [S0003-6951(99)04443-5].
Resumo:
The behavior of room temperature self-sustained current oscillations resulting from sequential resonance tunneling in a doped weakly-coupled GaAs/AlAs superlattice (SL) is investigated under hydrostatic pressure. From atmosphere pressure to 6.5 kbar, oscillations exist in the whole plateau of the I-V curve and oscillating characteristics are affected by the pressure. When hydrostatic pressure is higher than 6.5 kbar, the current oscillations are completely suppressed although a current plateau still can be seen in the I-V curve. The plateau disappears when the pressure is close to 13.5 kbar. As the main effect of hydrostatic pressure is to lower the X point valley with respect to Gamma point valley, the disappearance of oscillation and the plateau shrinkage before Gamma - X resonance takes place are attributed to the increases of thermoionic emission and nonresonant tunneling components determined by the lowest Gamma - X barrier height in GaAs/AlAs SL structure.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.