996 resultados para Restorative material
Resumo:
A new material structure with Al0.22Ga0.78As/In0.15Ga0.85As/GaAs emitter spacer layer and GaAs/In0.15Ga0.85As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated. RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio (PVCR) is 7.44 for RTD Analysis on these results suggests that the material structure will be helpful to improve the quality, of RTD.
Resumo:
A SOI thenno-optic variable optical attenuator with U-grooves based on a multimode interference coupler principle is fabricated. The dynamic attenuation range is 0 to 29 dB; at the wavelength range between 1510 nm and 1610nm, and the maximum power consumption is only l30mW. Compared to the variable optical attenuator without U-groove, the maximum power consumption decreases more than 230mW
Resumo:
The optical storage characteristics of a new kind of organic photochromic material-pyrrylfulgide were experimentally investigated in the established parallel optical data storage system. Using the pyrrylfulgide/PMMA film as a photon-mode recording medium, micro-images and encoded binary digital data were recorded, readout and erased in this parallel system. The storage density currently reaches 3 x 10(7) bit/cm(2). The recorded information on the film can be kept for years in darkness at room temperature.
Resumo:
The thermal stability of CoSi2 thin films on GaAs substrates has been studied using a variety of techniques. The CoSi2 thin films were formed by depositing Co(500 angstrom) and Si(1800 angstrom) layers on GaAs substrates by electron-beam evaporation followed by annealing processes, where the Si inter-layer was used as a diffusion/reaction barrier at the interface. The resistivity of CoSi2 thin films formed is about 30 muOMEGA cm. The Schottky barrier height of CoSi2/n-GaAs is 0.76 eV and the ideality factor is 1.14 after annealing at 750-degrees-C for 30 min. The CoSi2/GaAs interface is determined to be thermally stable and the thin film morphologically uniform on GaAs after 900-degrees-C/30 s anneal. The CoSi2 thin films fulfill the requirements in GaAs self-aligned gate technology.
Resumo:
A comparatively low-quality silicon wafer (with a purity of almost-equal-to 99.9%) was adopted to form a silicon-on-defect-layer (SODL) structure featuring improved crystalline silicon near the defect layer (DL) by means of proton implantation and subsequent annealing. Thus, the SODL technique provides an opportunity to enable low-quality silicon wafers to be used for fabrication of low-cost solar cells.
Resumo:
A new-type silicon material, silicon on defect layer (SODL) was proved to have a very high quality surface microstructure which is necessary for commercially feasible high-density very large scale integrated circuits (VLSI). The structure of the SODL material was viewed by transmission electron microscopy. The SODL material was also proved to have a buried defect layer with an insulating resistivity of 5.7 x 10(10) OMEGA-cm.
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.
Resumo:
A high-resistivity defect layer buried beneath the silicon surface layer by using proton implantation and two-step conventional furnace annealing is described. During the first annealing step (600-degrees-C), implanted hydrogen atoms move towards the damage region and then coalesce into hydrogen gas bubbles at the residual defect layer. During the second annealing step (1180-degrees-C) these bubbles do not move due to their large volume. Structural defects are formed around the bubbles at a depth of approximately 0.5-mu-m. The defect layer results in a high resistivity value. Experiments show that the quality of the surface layer has been improved because the surface Hall mobility increased by 20%. The sample was investigated by transmission electron microscopy.
Resumo:
A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer,all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here, we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.