923 resultados para Extensions
Resumo:
Antibodies to specific nucleic acid conformations are amongst the methods that have allowed the study of non-canonical (Watson-Crick) DNA structures in higher organisms. In this work, the structural limitations for the immunological detection of DNA.RNA hybrid duplexes were examined using specific RNA homopolymers as probes for homopolymer polydeoxyadenylic acid (poly(dA)).polydeoxythymidylic acid (poly(dT))-rich regions of Rhynchosciara americana (Diptera: Sciaridae) chromosomes. Anti-DNA.RNA duplexes did not react with the complex formed between chromosomal poly(dA) and exogenous polyuridylic acid (poly(rU)). Additionally, poly(rU) prevented the detection of polyadenylic acid.poly(dT) hybrid duplexes preformed in situ. These results raised the possibility that three-stranded structures rather than duplexes were formed in chromosomal sites. To test this hypothesis, the specificity of antibodies to triple-helical nucleic acids was reassessed employing distinct nucleic acid configurations. These antibodies were raised to the poly(dA).poly(rU).poly(rU) complex and have been used here for the first time in immunocytochemistry. Anti-triplex antibodies recognised the complex poly(dA).poly(rU).poly(rU) assembled with poly(rU) in poly(dA).poly(dT)-rich homopolymer regions of R. americana chromosomes. The antibodies could not detect short triplex stretches, suggesting the existence of constraints for triple-helix detection, probably related to triplex tract length. In addition, anti-poly(dA).poly(rU).poly(rU) antibodies reacted with the pericentric heterochromatin of RNase-treated polytene chromosomes of R. americana and Drosophila melanogaster. In apparent agreement with data obtained in cell types from other organisms, the results of this work suggest that significant triple-helix DNA extensions can be formed in pericentric regions of these species.
Resumo:
Hemiancistrus pankimpuju, new species, and Panaque bathyphilus, new species, are described from the main channel of the upper (Maranon) and middle (Solimoes)Amazon River, respectively. Both species are diagnosed by having a nearly white body, long filamentous extensions of both simple caudal-fin rays, small eyes, absence of an iris operculum and unique combinations of morphometrics. The coloration and morphology of these species, unique within Loricariidae, are hypothesized to be apomorphies associated with life in the dark, turbid depths of the Amazon mainstem. Extreme elongation of the caudal filaments in these and a variety of other main channel catfishes is hypothesized to have a mechanosensory function associated with predator detection.
Resumo:
In this article, we present a generalization of the Bayesian methodology introduced by Cepeda and Gamerman (2001) for modeling variance heterogeneity in normal regression models where we have orthogonality between mean and variance parameters to the general case considering both linear and highly nonlinear regression models. Under the Bayesian paradigm, we use MCMC methods to simulate samples for the joint posterior distribution. We illustrate this algorithm considering a simulated data set and also considering a real data set related to school attendance rate for children in Colombia. Finally, we present some extensions of the proposed MCMC algorithm.
Resumo:
We consider an agricultural production problem, in which one must meet a known demand of crops while respecting ecologically-based production constraints. The problem is twofold: in order to meet the demand, one must determine the division of the available heterogeneous arable areas in plots and, for each plot, obtain an appropriate crop rotation schedule. Rotation plans must respect ecologically-based constraints such as the interdiction of certain crop successions, and the regular insertion of fallows and green manures. We propose a linear formulation for this problem, in which each variable is associated with a crop rotation schedule. The model may include a large number of variables and it is, therefore, solved by means of a column-generation approach. We also discuss some extensions to the model, in order to incorporate additional characteristics found in field conditions. A set of computational tests using instances based on real-world data confirms the efficacy of the proposed methodology. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Calculations of local influence curvatures and leverage have been well developed when the parameters are unrestricted. In this article, we discuss the assessment of local influence and leverage under linear equality parameter constraints with extensions to inequality constraints. Using a penalized quadratic function we express the normal curvature of local influence for arbitrary perturbation schemes and the generalized leverage matrix in interpretable forms, which depend on restricted and unrestricted components. The results are quite general and can be applied in various statistical models. In particular, we derive the normal curvature under three useful perturbation schemes for generalized linear models. Four illustrative examples are analyzed by the methodology developed in the article.
Resumo:
We investigate the possibility of interpreting the degeneracy of the genetic code, i.e., the feature that different codons (base triplets) of DNA are transcribed into the same amino acid, as the result of a symmetry breaking process, in the context of finite groups. In the first part of this paper, we give the complete list of all codon representations (64-dimensional irreducible representations) of simple finite groups and their satellites (central extensions and extensions by outer automorphisms). In the second part, we analyze the branching rules for the codon representations found in the first part by computational methods, using a software package for computational group theory. The final result is a complete classification of the possible schemes, based on finite simple groups, that reproduce the multiplet structure of the genetic code. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.
Resumo:
In this paper, we give a sufficient (which is also necessary under a compatibility hypothesis) condition on a set of arrows in the quiver of an algebra A so that A is a split extension of A/M, where M is the ideal of A generated by the classes of these arrows. We also compare the notion of split extension with that of semiconvex extension of algebras.
Resumo:
Let A be a finite dimensional k-algebra over an algebraically closed field. Assume A=kQ/I where Q is a quiver without oriented cycles. We say that A is tilt-critical if it is not tilted but every proper convex subcategory of A is tilted. We describe the tilt-critical algebras which are strongly simply connected and tame.
Resumo:
We solve the Bjorling problem for timelike surfaces in the Lorentz-Minkowski space through a split-complex representation formula obtained for this kind of surface. Our approach uses the split-complex numbers and natural split-holomorphic extensions. As applications, we show that the minimal timelike surfaces of revolution as well as minimal ruled timelike surfaces can be characterized as solutions of certain adequate Bjorling problems in the Lorentz-Minkowski space. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We give estimates of the intrinsic and the extrinsic curvature of manifolds that are isometrically immersed as cylindrically bounded submanifolds of warped products. We also address extensions of the results in the case of submanifolds of the total space of a Riemannian submersion.
Resumo:
Can Boutet de Monvel`s algebra on a compact manifold with boundary be obtained as the algebra Psi(0)(G) of pseudodifferential operators on some Lie groupoid G? If it could, the kernel G of the principal symbol homomorphism would be isomorphic to the groupoid C*-algebra C*(G). While the answer to the above question remains open, we exhibit in this paper a groupoid G such that C*(G) possesses an ideal I isomorphic to G. In fact, we prove first that G similar or equal to Psi circle times K with the C*-algebra Psi generated by the zero order pseudodifferential operators on the boundary and the algebra K of compact operators. As both Psi circle times K and I are extensions of C(S*Y) circle times K by K (S*Y is the co-sphere bundle over the boundary) we infer from a theorem by Voiculescu that both are isomorphic.
Resumo:
In this paper we construct two free field realizations of the elliptic affine Lie algebra sl(2, R) circle plus Omega(R)/dR where R = C[t. t(-1), u vertical bar u(2) = t(3) - 2bt(2) + t]. The first realization provides an analogue of Wakimoto`s construction for Affine Kac-Moody algebras, but in the setting of the elliptic affine Lie algebra. The second realization gives new types of representations analogous to Imaginary Verma modules in the Affine setting. (c) 2009 Elsevier B.V. All rights reserved.