Heteroscedastic Nonlinear Regression Models


Autoria(s): CUERVO, Edilberto Cepeda; ACHCAR, Jorge Alberto
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

In this article, we present a generalization of the Bayesian methodology introduced by Cepeda and Gamerman (2001) for modeling variance heterogeneity in normal regression models where we have orthogonality between mean and variance parameters to the general case considering both linear and highly nonlinear regression models. Under the Bayesian paradigm, we use MCMC methods to simulate samples for the joint posterior distribution. We illustrate this algorithm considering a simulated data set and also considering a real data set related to school attendance rate for children in Colombia. Finally, we present some extensions of the proposed MCMC algorithm.

Research Division of the National University of Colombia (Universidad Nacional de Colombia)

Research Division of the National University of Colombia (Universidad Nacional de Colombia)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq-Brazil[300235/2005-4]

Identificador

COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, NEW YORK, v.39, n.2, p.405-419, 2010

0361-0918

http://producao.usp.br/handle/BDPI/28767

10.1080/03610910903480784

http://dx.doi.org/10.1080/03610910903480784

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS INC

NEW YORK

Relação

Communications in Statistics-simulation and Computation

Direitos

restrictedAccess

Copyright TAYLOR & FRANCIS INC

Palavras-Chave #Bayesian analysis #Heteroscedasticity #MCMC algorithm #Nonlinear regression #Parameter estimation #Statistics & Probability
Tipo

article

original article

publishedVersion