Curvature Estimates for Submanifolds in Warped Products
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
We give estimates of the intrinsic and the extrinsic curvature of manifolds that are isometrically immersed as cylindrically bounded submanifolds of warped products. We also address extensions of the results in the case of submanifolds of the total space of a Riemannian submersion. MEC[PCI2006-A7-0532] MEC MICINN MICINN[MTM2009-10418] Fundacion Seneca, Spain[04540/GERM/06] Fundacion Seneca, Spain CNPq-Brazil Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ICTP ICTP FAPESP[2007/03192-7] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
RESULTS IN MATHEMATICS, v.60, n.1/Abr, p.265-286, 2011 1422-6383 http://producao.usp.br/handle/BDPI/30728 10.1007/s00025-011-0154-5 |
Idioma(s) |
eng |
Publicador |
BIRKHAUSER VERLAG AG |
Relação |
Results in Mathematics |
Direitos |
restrictedAccess Copyright BIRKHAUSER VERLAG AG |
Palavras-Chave | #Warped product manifolds #Omori-Yau Maximum Principle #Weak Omori-Yau Maximum Principle #cylindrically bounded submanifolds #sectional curvature #scalar curvature #mean curvature #MANIFOLDS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |