Curvature Estimates for Submanifolds in Warped Products


Autoria(s): ALIAS, L. J.; BESSA, G. P.; MONTENEGRO, J. F.; PICCIONE, P.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

We give estimates of the intrinsic and the extrinsic curvature of manifolds that are isometrically immersed as cylindrically bounded submanifolds of warped products. We also address extensions of the results in the case of submanifolds of the total space of a Riemannian submersion.

MEC[PCI2006-A7-0532]

MEC

MICINN

MICINN[MTM2009-10418]

Fundacion Seneca, Spain[04540/GERM/06]

Fundacion Seneca, Spain

CNPq-Brazil

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

ICTP

ICTP

FAPESP[2007/03192-7]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

RESULTS IN MATHEMATICS, v.60, n.1/Abr, p.265-286, 2011

1422-6383

http://producao.usp.br/handle/BDPI/30728

10.1007/s00025-011-0154-5

http://dx.doi.org/10.1007/s00025-011-0154-5

Idioma(s)

eng

Publicador

BIRKHAUSER VERLAG AG

Relação

Results in Mathematics

Direitos

restrictedAccess

Copyright BIRKHAUSER VERLAG AG

Palavras-Chave #Warped product manifolds #Omori-Yau Maximum Principle #Weak Omori-Yau Maximum Principle #cylindrically bounded submanifolds #sectional curvature #scalar curvature #mean curvature #MANIFOLDS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion