959 resultados para Cz and FZ silicon
Resumo:
The TRIM.SP program which is based on the binary collision approximation was changed to handle not only repulsive interaction potentials, but also potentials with an attractive part. Sputtering yields, average depth and reflection coefficients calculated with four different potentials are compared. Three purely repulsive potentials (Meliere, Kr-C and ZBL) are used and an ab initio pair potential, which is especially calculated for silicon bombardment by silicon. The general trends in the calculated results are similar for all potentials applied, but differences between the repulsive potentials and the ab initio potential occur for the reflection coefficients and the sputtering yield at large angles of incidence.
Resumo:
We report on the observation of K\alpha\alpha X-rays of Si, produced in collisions of 15-28 MeV Si projectiles with various target atoms in the range Z =6 to 29. Energy shifts of X-rays were measured and are compared with theoretical predictions. Cross section ratios for emission of K\alpha\alpha and K\alpha radiation are given.
Resumo:
Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.
Resumo:
The main focus and concerns of this PhD thesis is the growth of III-V semiconductor nanostructures (Quantum dots (QDs) and quantum dashes) on silicon substrates using molecular beam epitaxy (MBE) technique. The investigation of influence of the major growth parameters on their basic properties (density, geometry, composition, size etc.) and the systematic characterization of their structural and optical properties are the core of the research work. The monolithic integration of III-V optoelectronic devices with silicon electronic circuits could bring enormous prospect for the existing semiconductor technology. Our challenging approach is to combine the superior passive optical properties of silicon with the superior optical emission properties of III-V material by reducing the amount of III-V materials to the very limit of the active region. Different heteroepitaxial integration approaches have been investigated to overcome the materials issues between III-V and Si. However, this include the self-assembled growth of InAs and InGaAs QDs in silicon and GaAx matrices directly on flat silicon substrate, sitecontrolled growth of (GaAs/In0,15Ga0,85As/GaAs) QDs on pre-patterned Si substrate and the direct growth of GaP on Si using migration enhanced epitaxy (MEE) and MBE growth modes. An efficient ex-situ-buffered HF (BHF) and in-situ surface cleaning sequence based on atomic hydrogen (AH) cleaning at 500 °C combined with thermal oxide desorption within a temperature range of 700-900 °C has been established. The removal of oxide desorption was confirmed by semicircular streaky reflection high energy electron diffraction (RHEED) patterns indicating a 2D smooth surface construction prior to the MBE growth. The evolution of size, density and shape of the QDs are ex-situ characterized by atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The InAs QDs density is strongly increased from 108 to 1011 cm-2 at V/III ratios in the range of 15-35 (beam equivalent pressure values). InAs QD formations are not observed at temperatures of 500 °C and above. Growth experiments on (111) substrates show orientation dependent QD formation behaviour. A significant shape and size transition with elongated InAs quantum dots and dashes has been observed on (111) orientation and at higher Indium-growth rate of 0.3 ML/s. The 2D strain mapping derived from high-resolution TEM of InAs QDs embedded in silicon matrix confirmed semi-coherent and fully relaxed QDs embedded in defectfree silicon matrix. The strain relaxation is released by dislocation loops exclusively localized along the InAs/Si interfaces and partial dislocations with stacking faults inside the InAs clusters. The site controlled growth of GaAs/In0,15Ga0,85As/GaAs nanostructures has been demonstrated for the first time with 1 μm spacing and very low nominal deposition thicknesses, directly on pre-patterned Si without the use of SiO2 mask. Thin planar GaP layer was successfully grown through migration enhanced epitaxy (MEE) to initiate a planar GaP wetting layer at the polar/non-polar interface, which work as a virtual GaP substrate, for the GaP-MBE subsequently growth on the GaP-MEE layer with total thickness of 50 nm. The best root mean square (RMS) roughness value was as good as 1.3 nm. However, these results are highly encouraging for the realization of III-V optical devices on silicon for potential applications.
Resumo:
A femtosecond-laser pulse can induce ultrafast nonthermal melting of various materials along pathways that are inaccessible under thermodynamic conditions, but it is not known whether there is any structural modification at fluences just below the melting threshold. Here, we show for silicon that in this regime the room-temperature phonons become thermally squeezed, which is a process that has not been reported before in this material. We find that the origin of this effect is the sudden femtosecond-laser-induced softening of interatomic bonds, which can also be described in terms of a modification of the potential energy surface. We further find in ab initio molecular-dynamics simulations on laser-excited potential energy surfaces that the atoms move in the same directions during the first stages of nonthermal melting and thermal phonon squeezing. Our results demonstrate how femtosecond-laser-induced coherent fluctuations precurse complete atomic disordering as a function of fluence. The common underlying bond-softening mechanism indicates that this relation between thermal squeezing and nonthermal melting is not material specific.
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.
Resumo:
The effect of flux angle, substrate temperature and deposition rate on obliquely deposited germanium (Ge) films has been investigated. By carrying out deposition with the vapor flux inclined at 87° to the substrate normal at substrate temperatures of 250°C or 300°C, it may be possible to obtain isolated Ge nanowires. The Ge nanowires are crystalline as shown by Raman Spectroscopy.
Resumo:
This paper reports the surface morphologies and ablation of crystalline silicon wafers irradiated by infra-red 775 nm Ti:sapphire femtosecond laser. The effects of energy fluences (below and above single-pulse modification) with different number of pulses were studied. New morphological features such as pits, cracks formation, Laser-Induced Periodic Surface Structures (LIPSS) and ablation were observed. The investigation indicated that there are two distinct mechanisms under femtosecond laser irradiation: low fluence regime with different morphological features and high fluence regime with high material removal and without complex morphological features.
Resumo:
High aspect ratio polymeric micro-patterns are ubiquitous in many fields ranging from sensors, actuators, optics, fluidics and medical. Second generation PDMS molds are replicated against first generation silicon molds created by deep reactive ion etching. In order to ensure successful demolding, the silicon molds are coated with a thin layer of C[subscript 4]F[subscript 8] plasma polymer to reduce the adhesion force. Peel force and demolding status are used to determine if delamination is successful. Response surface method is employed to provide insights on how changes in coil power, passivating time and gas flow conditions affect plasma polymerization of C[subscript 4]F[subscript 8].
Resumo:
Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation
Resumo:
The classical description of Si oxidation given by Deal and Grove has well-known limitations for thin oxides (below 200 Ã). Among the large number of alternative models published so far, the interfacial emission model has shown the greatest ability to fit the experimental oxidation curves. It relies on the assumption that during oxidation Si interstitials are emitted to the oxide to release strain and that the accumulation of these interstitials near the interface reduces the reaction rate there. The resulting set of differential equations makes it possible to model diverse oxidation experiments. In this paper, we have compared its predictions with two sets of experiments: (1) the pressure dependence for subatmospheric oxygen pressure and (2) the enhancement of the oxidation rate after annealing in inert atmosphere. The result is not satisfactory and raises serious doubts about the model’s correctness
Resumo:
The diffusion of interstitial oxygen In silicon at 525 degrees C is studied using time-of-flight small-angle neutron scattering (SANS) to separate the elastic scattering from oxygen-containing aggregates from the inelastic scattering from neutron-phonon interactions. The growth of oxygen-containing aggregates as a function of time gives a diffusion coefficient, D, calculated from Ham's theory, that is I factor of similar to 3.8 +/- 1.4 times higher than that expected by extrapolation of higher and lower temperature data (D = 0.13 exp(-2.53 eV kT(-1)) cm(2) s(-1)). This result confirms previous observations of enhanced diffusion at intermediate temperatures (400 degrees C-650 degrees C) although the magnitude of the enhancement we find is Much smaller than that reported by some others.
Energy separation of neutrons scattered at small angles from silicon using time-of-flight techniques
Resumo:
The time-of-flight technique is used on a small-angle neutron scattering instrument to separate the energies of the scattered neutrons, in order to determine the origin of the temperature-dependent scattering observed from silicon at Q > similar to 0.1 angstrom(-1). A quantitative analysis of the results in comparison with the phonon dispersion curves, determined by Dolling using a triple-axis neutron spectrometer, shows that the temperature-dependent scattering can be understood in terms of Umklapp processes whereby neutrons gain energy from phonons.
Resumo:
The infrared spectrum of the stretching fundamentals of SiF2 has been obtained at a resolution of ≈ 0.1 cm−1 using a FTIR spectrometer. The spectrum has been analysed using computer simulation based on a coupled hamiltonian for v1 and v3, giving v1 = 855.01 cm−1 and v3 = 870.40 cm−1. The relative magnitude and sign of the vibrational transition moments has been determined from the ξC13 Coriolis coupling.