790 resultados para secondary science education experiences
Resumo:
How can a holistic approach to library and information science education encompassing vocational and university sectors that meets the future information workforce requirements be achieved? This paper will outline a twelve month national project that considered this very question. Funded by the Australian Learning and Teaching Council (ALTC).
Resumo:
The globalized nature of modern society has generated a number of pressures that impact internationally on countries’ policies and practices of science education. Among these pressures are key issues of health and environment confronting global science, global economic control through multinational capitalism, comparative and competitive international testing of student science achievement, and the desire for more humane and secure international society. These are not all one-way pressures and there is evidence of both more conformity in the intentions and practices of science education and of a greater appreciation of how cultural differences, and the needs of students as future citizens can be met. Hence while a case for economic and competitive subservience of science education can be made, the evidence for such narrowing is countered by new initiatives that seek to broaden its vision and practices. The research community of science education has certainly widened internationally and this generates many healthy exchanges, although cultural styles of education other than Western ones are still insufficiently recognized. The dominance of English language within these research exchanges is, however, causing as many problems as it solves. Science education, like education as a whole, is a strongly cultural phenomenon, and this provides a healthy and robust buffer to the more negative effects of globalization
Resumo:
The dawn of the twenty-first century encouraged a number of scientific and technological organisations to identify what they saw as ‘Grand Challenges and Opportunities’. Issues of environment and health featured very prominently in these quite short lists, as can be seen from a sample of these challenges in Table 1. Indeed, the first two lists of challenges in Table 1 were identified as for the environment and for health, respectively.
Resumo:
Since 2000 there has been pressure on education systems for develop in students a number of competences that are described as generic. This pressure stems from studies of the changing nature of work in the Knowledge Society that is now so dominant. The DeSeCo project identified a number of these competences, and listed them under the headings of communicative, analytical and personal. They include thinking, creativity, communication skills, knowing how to learn, working in teams, adapting to change, and problem solving. These competences pose a substantial challenge to the manner in which education as a whole, and science education in particular, has hitherto been generally conceived. It is now common to find their importance acknowledged in new formulation of the curriculum. The paper reviews a number of these curriculum documents and how they have tried to relate these competences to the teaching and learning of Science, a subject with its own very specific content for learning. It will be suggested that the challenge provides an opportunity for a reconstruction of the teaching and learning of science in schools that will increase its effectiveness for more students.
Resumo:
The establishment and continuity of two international comparative assessments of science learning—the IEA’s TIMSS project and the OECD’s PISA project—have meant that there are now high-status reference points for other national and more local approaches to assessing the efficacy of science teaching and learning. Both projects, albeit with very different senses of what the outcome of science learning should be, have contributed positively and negatively to the current state of assessment of school science. The TIMSS project looks back at the science that is commonly included in the curricula of the participating countries. It is thus not about established school science nor about innovations in it. PISA is highly innovative looking, prospectively forward to see how students can use their science learning in everyday life situations. In this chapter some of these positives and negatives are discussed.
Resumo:
In this response to Tom G. K. Bryce and Stephen P. Day’s (Cult Stud Sci Educ. doi:10.1007/s11422-013-9500-0, 2013) original article, I share with them their interest in the teaching of climate change in school science, but I widen it to include other contemporary complex socio-scientific issues that also need to be discussed. I use an alternative view of the relationship between science, technology and society, supported by evidence from both science and society, to suggest science-informed citizens as a more realistic outcome image of school science than the authors’ one of mini-scientists. The intellectual independence of students Bryce and Day assume, and intend for school science, is countered with an active intellectual dependence. It is only in relation to emerging and uncertain scientific contexts that students should be taught about scepticism, but they also need to learn when, and why to trust science as an antidote to the expressions of doubting it. Some suggestions for pedagogies that could lead to these new learnings are made. The very recent fifth report of the IPCC answers many of their concerns about climate change.
Resumo:
This paper discusses our experiences of integrating a Multi-User Virtual Environment (MUVE) called Quest Atlantis into a pre-service secondary science education unit. The use of educational MUVEs as teaching tools is accelerating, so it is crucial that pre-service teachers develop some expertise with these and related technologies. We outline the processes we followed in embedding Quest Atlantis into the content and assessment of the unit, the results of this initiative and its implications for integrating MUVEs and other ICTs into teacher education programs. Challenges such as limited time and expertise, demands of a busy teaching program, and the need for continuous specialist support need to be overcome for sustainable integration of MUVEs and related technologies into preservice teacher education. This is particularly important given the potential of preservice teachers as change agents in schools, and the imperatives of the ICT-related National Professional Standards for Teachers and the Australian Curriculum.
Resumo:
This thesis studied the emotional climate (EC) of a pre-service science teachers' class in Bhutan. It examined the types of activities students engaged in and the relationship between the tutor and students whose interactions produced both positive and negative EC in the class. The major finding was that the activities involving students' presentations using video clips and models, group activity, and coteaching valenced the class EC positively. Negative EC was identified when the tutor ignored students' responses, during formal lectures, and when the tutor was uncertain of the subject knowledge. The replication of activities that produce positive EC by other Bhutanese tutors may improve the standard of science education in the country.
Resumo:
The world and its peoples are facing multiple, complex challenges and we cannot continue as we are (Moss, 2010). Earth‘s “natural capital” - nature‘s ability to provide essential ecosystem services to stabilize world climate systems, maintain water quality, support secure food production, supply energy needs, moderate environmental impacts, and ensure social harmony and equity – is seriously compromised (Gough, 2005; Hawkins, Lovins & Lovins, 1999). To further summarize, current rates of resource consumption by the global human population are unsustainable (Kitzes, Peller, Goldfinger & Wackernagel, 2007) for human and non-human species, and for future generations. Further, continuing growth in world population and global political commitment to growth economics compounds these demands. Despite growing recognition of the serious consequences for people and planet, little consideration is given, within most nations, to the social and environmental issues that economic growth brings. For example, Australia is recognised as one of the developed countries most vulnerable to the impacts of climate change. Yet, to date, responses (such as carbon pricing) have been small-scale, fragmented, and their worth disputed, even ridiculed. This is at a time referred to as ‘the critical decade’ (Hughes & McMichael, 2011) when the world’s peoples must make strong choices if we are to avert the worst impacts of climate change.
Resumo:
This chapter will report on a study that sought to develop a systemwide approach to embedding education for sustainability (EfS (the preferred term in Australia) in teacher education. The strategy for a coordinated and coherent systemic approach involved identifying and eliciting the participation of key agents of change within the‘teacher education system’ in one state in Australia, Queensland. This consisted of one representative from each of the eight Queensland universities offering pre-service teacher education, as well as the teacher registration authority, the key State Government agency responsible for public schools, and two national professional organisations. Part of the approach involved teacher educators at different universities developing an institutional specific approach to embedding sustainability education within their teacher preparation programs. Project participants worked collaboratively to facilitate policy and curriculum change while the project leaders used an action research approach to inform and monitor actions taken and to provide guidance for subsequent actions to effect change simultaneously at the state, institutional and course levels. In addition to the state-wide multi-site case study, which we argue has broader applications to national systems in other countries, the chapter will include two institutional level case studies of efforts to embed sustainability in science teacher education.
Resumo:
Here's a challenge. Try searching Google for the phrase 'rural science teachers' in Australian web content. Surprisingly, my attempts returned only two hits, neither of which actually referred to Australian teachers. Searches for 'rural science education' fare little better. On this evidence one could be forgiven for wondering whether the concept of a rural science teacher actually exists in the Australian consciousness. OK, so Google is not (yet) the arbiter of our conceptions, and to be fair, there aren't many hits for 'urban science teacher' either. The point I'm making is that in Australia we don't tend to conceptualise science teachers or science education as rural or urban. As a profession we are quite mobile, and throughout our careers many of us have worked in both city and country schools. But that's not to say that rural science teaching isn't conceptually or practically different to teaching in the city.
Resumo:
Murphy, L. and Thomas, L. 2008. Dangers of a fixed mindset: implications of self-theories research for computer science education. In Proceedings of the 13th Annual Conference on innovation and Technology in Computer Science Education (Madrid, Spain, June 30 - July 02, 2008). ITiCSE '08. ACM, New York, NY, 271-275.