827 resultados para robotic palletising


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the current status of the WASP project, a pair of wide angle photometric telescopes, individually called SuperWASP. SuperWASP-I is located in La Palma, and SuperWASP-II at Sutherland in South Africa. SW-I began operations in April 2004. SW-II is expected to be operational in early 2006. Each SuperWASP instrument consists of up to 8 individual cameras using ultra-wide field lenses backed by high-quality passively cooled CCDs. Each camera covers 7.8 x 7.8 sq degrees of sky, for nearly 500 sq degrees of total sky coverage. One of the current aims of the WASP project is the search for extra-solar planet transits with a focus on brighter stars in the magnitude range similar to 8 to 13. Additionally, WASP will search for, optical transients, track Near-Earth Objects, and study many types of variable stars and extragalactic objects. The collaboration has developed a custom-built reduction pipeline that achieves better than I percent photometric precision. We discuss future goals, which include: nightly on-mountain reductions that could be used to automatically drive alerts via a small robotic telescope network, and possible roles of the WASP telescopes as providers in such a network. Additional technical details of the telescopes, data reduction, and consortium members and institutions can be found on the web site at: http://www.superwasp.org/. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manuscript describes how motor behaviour researchers who are not at the same time expert roboticists may implement an experimental apparatus, which has the ability to dictate torque fields around a single joint on one limb or single joints on multiple limbs without otherwise interfering with the inherent dynamics of those joints. Such an apparatus expands the exploratory potential of the researcher wherever experimental distinction of factors may necessitate independent control of torque fields around multiple limbs, or the shaping of torque fields of a given joint independently of its plane of motion, or its directional phase within that plane. The apparatus utilizes torque motors. The challenge with torque motors is that they impose added inertia on limbs and thus attenuate joint dynamics. We eliminated this attenuation by establishing an accurate mathematical model of the robotic device using the Box-Jenkins method, and cancelling out its dynamics by employing the inverse of the model as a compensating controller. A direct measure of the remnant inertial torque as experienced by the hand during a 50 s period of wrist oscillations that increased gradually in frequency from 1.0 to 3.8 Hz confirmed that the removal of the inertial effect of the motor was effectively complete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manipulator motion planning is a task which relies heavily on the construction of a configuration space prior to path planning. However when fast real-time motion is needed, the full construction of the manipulator's high-dimensional configu-ration space can be too slow and expensive. Alternative planning methods, which avoid this full construction of the manipulator's configuration space are needed to solve this problem. Here, one such existing local planning method for manipulators based on configuration-sampling and subgoal-selection has been extended. Using a modified Artificial Potential Fields (APF) function, goal-configuration sampling and a novel subgoal selection method, it provides faster, more optimal paths than the previously proposed work. Simulation results show a decrease in both runtime and path lengths, along with a decrease in unexpected local minimum and crashing issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chatbots, known as pedagogical agents in educational settings, have a long history of use, beginning with Alan Turing’s work. Since then online chatbots have become embedded into the fabric of technology. Yet understandings of these technologies are inchoate and often untheorised. Integration of chatbots into educational settings over the past five years suggests an increase in interest in the ways in which chatbots might be adopted and adapted for teaching and learning. This article draws on historical literature and theories that to date have largely been ignored in order to (re)contextualise two studies that used responsive evaluation to examine the use of pedagogical agents in education. Findings suggest that emotional interactions with pedagogical agents are intrinsic to a user’s sense of trust, and that truthfulness, personalisation and emotional engagement are vital when using pedagogical agents to enhance online learning. Such findings need to be considered in the light of ways in which notions of learning are being redefined in the academy and the extent to which new literacies and new technologies are being pedalled as pedagogies in ways that undermine what higher education is, is for, and what learning means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it is studied the dynamics of the robotic bird in terms of time response and robustness. It is analyzed the wing angle of attack and the velocity of the bird, the tail influence, the gliding flight and the flapping flight. The results are positive for the construction of flying robots. The development of computational simulation based on the dynamic of the robotic bird should allow testing strategies and different algorithms of control such as integer and fractional controllers.