931 resultados para phylogeographical hypothesis testing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides a first look at the acceptance of Accountable-eHealth systems, a new genre of eHealth systems, designed to manage information privacy concerns that hinder the proliferation of eHealth. The underlying concept of AeH systems is appropriate use of information through after-the-fact accountability for intentional misuse of information by healthcare professionals. An online questionnaire survey was utilised for data collection from three educational institutions in Queensland, Australia. A total of 23 hypothesis relating to 9 constructs were tested using a structural equation modelling technique. A total of 334 valid responses were received. The cohort consisted of medical, nursing and other health related students studying at various levels in both undergraduate and postgraduate courses. The hypothesis testing disproved 7 hypotheses. The empirical research model developed was capable of predicting 47.3% of healthcare professionals’ perceived intention to use AeH systems. A validation of the model with a wider survey cohort would be useful to confirm the current findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate variability and change are risk factors for climate sensitive activities such as agriculture. Managing these risks requires "climate knowledge", i.e. a sound understanding of causes and consequences of climate variability and knowledge of potential management options that are suitable in light of the climatic risks posed. Often such information about prognostic variables (e.g. yield, rainfall, run-off) is provided in probabilistic terms (e.g. via cumulative distribution functions, CDF), whereby the quantitative assessments of these alternative management options is based on such CDFs. Sound statistical approaches are needed in order to assess whether difference between such CDFs are intrinsic features of systems dynamics or chance events (i.e. quantifying evidences against an appropriate null hypothesis). Statistical procedures that rely on such a hypothesis testing framework are referred to as "inferential statistics" in contrast to descriptive statistics (e.g. mean, median, variance of population samples, skill scores). Here we report on the extension of some of the existing inferential techniques that provides more relevant and adequate information for decision making under uncertainty.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides a first look at the acceptance of Accountable-eHealth (AeH) systems–a new genre of eHealth systems designed to manage information privacy concerns that hinder the proliferation of eHealth. The underlying concept of AeH systems is appropriate use of information through after-the-fact accountability for intentional misuse of information by healthcare professionals. An online questionnaire survey was utilised for data collection from three educational institutions in Queensland, Australia. A total of 23 hypotheses relating to 9 constructs were tested using a structural equation modelling technique. The moderation effects on the hypotheses were also tested based on six moderation factors to understand their role on the designed research model. A total of 334 valid responses were received. The cohort consisted of medical, nursing and other health related students studying at various levels in both undergraduate and postgraduate courses. Hypothesis testing provided sufficient data to accept 7 hypotheses. The empirical research model developed was capable of predicting 47.3% of healthcare professionals’ perceived intention to use AeH systems. All six moderation factors showed significant influence on the research model. A validation of this model with a wider survey cohort is recommended as a future study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this note, we shortly survey some recent approaches on the approximation of the Bayes factor used in Bayesian hypothesis testing and in Bayesian model choice. In particular, we reassess importance sampling, harmonic mean sampling, and nested sampling from a unified perspective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MEG directly measures the neuronal events and has greater temporal resolution than fMRI, which has limited temporal resolution mainly due to the larger timescale of the hemodynamic response. On the other hand fMRI has advantages in spatial resolution, while the localization results with MEG can be ambiguous due to the non-uniqueness of the electromagnetic inverse problem. Thus, these methods could provide complementary information and could be used to create both spatially and temporally accurate models of brain function. We investigated the degree of overlap, revealed by the two imaging methods, in areas involved in sensory or motor processing in healthy subjects and neurosurgical patients. Furthermore, we used the spatial information from fMRI to construct a spatiotemporal model of the MEG data in order to investigate the sensorimotor system and to create a spatiotemporal model of its function. We compared the localization results from the MEG and fMRI with invasive electrophysiological cortical mapping. We used a recently introduced method, contextual clustering, for hypothesis testing of fMRI data and assessed the the effect of neighbourhood information use on the reproducibility of fMRI results. Using MEG, we identified the ipsilateral primary sensorimotor cortex (SMI) as a novel source area contributing to the somatosensory evoked fields (SEF) to median nerve stimulation. Using combined MEG and fMRI measurements we found that two separate areas in the lateral fissure may be the generators for the SEF responses from the secondary somatosensory cortex region. The two imaging methods indicated activation in corresponding locations. By using complementary information from MEG and fMRI we established a spatiotemporal model of somatosensory cortical processing. This spatiotemporal model of cerebral activity was in good agreement with results from several studies using invasive electrophysiological measurements and with anatomical studies in monkey and man concerning the connections between somatosensory areas. In neurosurgical patients, the MEG dipole model turned out to be more reliable than fMRI in the identification of the central sulcus. This was due to prominent activation in non-primary areas in fMRI, which in some cases led to erroneous or ambiguous localization of the central sulcus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

REDEFINE is a reconfigurable SoC architecture that provides a unique platform for high performance and low power computing by exploiting the synergistic interaction between coarse grain dynamic dataflow model of computation (to expose abundant parallelism in applications) and runtime composition of efficient compute structures (on the reconfigurable computation resources). We propose and study the throttling of execution in REDEFINE to maximize the architecture efficiency. A feature specific fast hybrid (mixed level) simulation framework for early in design phase study is developed and implemented to make the huge design space exploration practical. We do performance modeling in terms of selection of important performance criteria, ranking of the explored throttling schemes and investigate effectiveness of the design space exploration using statistical hypothesis testing. We find throttling schemes which give appreciable (24.8%) overall performance gain in the architecture and 37% resource usage gain in the throttling unit simultaneously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider cooperative spectrum sensing for cognitive radios. We develop an energy efficient detector with low detection delay using sequential hypothesis testing. Sequential Probability Ratio Test (SPRT) is used at both the local nodes and the fusion center. We also analyse the performance of this algorithm and compare with the simulations. Modelling uncertainties in the distribution parameters are considered. Slow fading with and without perfect channel state information at the cognitive radios is taken into account.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider cooperative spectrum sensing for cognitive radios. We develop an energy efficient detector with low detection delay using sequential hypothesis testing. Sequential Probability Ratio Test (SPRT) is used at both the local nodes and the fusion center. We also analyse the performance of this algorithm and compare with the simulations. Modelling uncertainties in the distribution parameters are considered. Slow fading with and without perfect channel state information at the cognitive radios is taken into account.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider nonparametric or universal sequential hypothesis testing when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to some other unknown distribution. These algorithms are primarily motivated from spectrum sensing in Cognitive Radios and intruder detection in wireless sensor networks. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. The algorithms are first proposed for discrete alphabet. Their performance and asymptotic properties are studied theoretically. Later these are extended to continuous alphabets. Their performance with two well known universal source codes, Lempel-Ziv code and KT-estimator with Arithmetic Encoder are compared. These algorithms are also compared with the tests using various other nonparametric estimators. Finally a decentralized version utilizing spatial diversity is also proposed and analysed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider nonparametric sequential hypothesis testing when the distribution under null hypothesis is fully known and the alternate hypothesis corresponds to some other unknown distribution. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. These algorithms are motivated from spectrum sensing application in Cognitive Radios. Universal sequential hypothesis testing using Lempel Ziv codes and Krichevsky-Trofimov estimator with Arithmetic Encoder are considered and compared for different distributions. Cooperative spectrum sensing with multiple Cognitive Radios using universal codes is also considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers cooperative spectrum sensing algorithms for Cognitive Radios which focus on reducing the number of samples to make a reliable detection. We propose algorithms based on decentralized sequential hypothesis testing in which the Cognitive Radios sequentially collect the observations, make local decisions and send them to the fusion center for further processing to make a final decision on spectrum usage. The reporting channel between the Cognitive Radios and the fusion center is assumed more realistically as a Multiple Access Channel (MAC) with receiver noise. Furthermore the communication for reporting is limited, thereby reducing the communication cost. We start with an algorithm where the fusion center uses an SPRT-like (Sequential Probability Ratio Test) procedure and theoretically analyze its performance. Asymptotically, its performance is close to the optimal centralized test without fusion center noise. We further modify this algorithm to improve its performance at practical operating points. Later we generalize these algorithms to handle uncertainties in SNR and fading. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frequent episode discovery is one of the methods used for temporal pattern discovery in sequential data. An episode is a partially ordered set of nodes with each node associated with an event type. For more than a decade, algorithms existed for episode discovery only when the associated partial order is total (serial episode) or trivial (parallel episode). Recently, the literature has seen algorithms for discovering episodes with general partial orders. In frequent pattern mining, the threshold beyond which a pattern is inferred to be interesting is typically user-defined and arbitrary. One way of addressing this issue in the pattern mining literature has been based on the framework of statistical hypothesis testing. This paper presents a method of assessing statistical significance of episode patterns with general partial orders. A method is proposed to calculate thresholds, on the non-overlapped frequency, beyond which an episode pattern would be inferred to be statistically significant. The method is first explained for the case of injective episodes with general partial orders. An injective episode is one where event-types are not allowed to repeat. Later it is pointed out how the method can be extended to the class of all episodes. The significance threshold calculations for general partial order episodes proposed here also generalize the existing significance results for serial episodes. Through simulations studies, the usefulness of these statistical thresholds in pruning uninteresting patterns is illustrated. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider nonparametric sequential hypothesis testing problem when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to a general family of distributions. We propose a simple algorithm to address the problem. Its performance is analysed and asymptotic properties are proved. The simulated and analysed performance of the algorithm is compared with an earlier algorithm addressing the same problem with similar assumptions. Finally, we provide a justification for our model motivated by a Cognitive Radio scenario and modify the algorithm for optimizing performance when information about the prior probabilities of occurrence of the two hypotheses is available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the hypothesis testing problem of spectrum sensing in a cognitive radio is formulated as a Goodness-of-fit test against the general class of noise distributions used in most communications-related applications. A simple, general, and powerful spectrum sensing technique based on the number of weighted zero-crossings in the observations is proposed. For the cases of uniform and exponential weights, an expression for computing the near-optimal detection threshold that meets a given false alarm probability constraint is obtained. The proposed detector is shown to be robust to two commonly encountered types of noise uncertainties, namely, the noise model uncertainty, where the PDF of the noise process is not completely known, and the noise parameter uncertainty, where the parameters associated with the noise PDF are either partially or completely unknown. Simulation results validate our analysis, and illustrate the performance benefits of the proposed technique relative to existing methods, especially in the low SNR regime and in the presence of noise uncertainties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider information theoretic secret key (SK) agreement and secure function computation by multiple parties observing correlated data, with access to an interactive public communication channel. Our main result is an upper bound on the SK length, which is derived using a reduction of binary hypothesis testing to multiparty SK agreement. Building on this basic result, we derive new converses for multiparty SK agreement. Furthermore, we derive converse results for the oblivious transfer problem and the bit commitment problem by relating them to SK agreement. Finally, we derive a necessary condition for the feasibility of secure computation by trusted parties that seek to compute a function of their collective data, using an interactive public communication that by itself does not give away the value of the function. In many cases, we strengthen and improve upon previously known converse bounds. Our results are single-shot and use only the given joint distribution of the correlated observations. For the case when the correlated observations consist of independent and identically distributed (in time) sequences, we derive strong versions of previously known converses.