The minimax distortion redundancy in empirical quantizer design
| Contribuinte(s) |
Universitat Pompeu Fabra. Departament d'Economia i Empresa |
|---|---|
| Data(s) |
15/09/2005
|
| Resumo |
We obtain minimax lower and upper bounds for the expected distortionredundancy of empirically designed vector quantizers. We show that the meansquared distortion of a vector quantizer designed from $n$ i.i.d. datapoints using any design algorithm is at least $\Omega (n^{-1/2})$ awayfrom the optimal distortion for some distribution on a bounded subset of${\cal R}^d$. Together with existing upper bounds this result shows thatthe minimax distortion redundancy for empirical quantizer design, as afunction of the size of the training data, is asymptotically on the orderof $n^{1/2}$. We also derive a new upper bound for the performance of theempirically optimal quantizer. |
| Identificador | |
| Idioma(s) |
eng |
| Direitos |
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| Palavras-Chave | #Statistics, Econometrics and Quantitative Methods #estimation #hypothesis testing #statistical decision theory: operations research |
| Tipo |
info:eu-repo/semantics/workingPaper |