A data-dependent skeleton estimate and a scale-sensitive dimension for classification


Autoria(s): Horvath, Marta; Lugosi, Gábor
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

The classical binary classification problem is investigatedwhen it is known in advance that the posterior probability function(or regression function) belongs to some class of functions. We introduceand analyze a method which effectively exploits this knowledge. The methodis based on minimizing the empirical risk over a carefully selected``skeleton'' of the class of regression functions. The skeleton is acovering of the class based on a data--dependent metric, especiallyfitted for classification. A new scale--sensitive dimension isintroduced which is more useful for the studied classification problemthan other, previously defined, dimension measures. This fact isdemonstrated by performance bounds for the skeleton estimate in termsof the new dimension.

Identificador

http://hdl.handle.net/10230/1073

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Statistics, Econometrics and Quantitative Methods #estimation #hypothesis testing #statistical decision theory: operations research
Tipo

info:eu-repo/semantics/workingPaper