648 resultados para experimentelle Atomphysik, Speicherung einzelner Teilchen
Resumo:
ZusammenfassungUntersuchungen zur Speicherung, Laserkühlung und Kristallisation von Ca+-Ionen in einer linearen PaulfalleIn dieser Arbeit wurden grundlegende Untersuchungen vonlasergekühlten Ionen in einer linearen Paulfalledurchgeführt. Diese können in drei Bereiche gegliedertwerden: Dynamik der Ionen in der linearen Paulfalle. Hierzuwurden Speicherbereich, parametrische Anregungen undSchwingungsfrequenzen der Ionen in der linearen Paulfalleauch hinsichtlich der Unterschiede zur traditionellendreidimensionalenuntersucht. Über die genaue Messung der Schwingungsfrequenzenkonnte der Abstand zweier Ionen in einem Kristall bis auf 10-4genau bestimmt werden. Diese Genauigkeit der Abstandsbestimmung ist notwendig, um theoretische Vorhersagen zu kooperativen Effektenüberprüfen zu können. Laserkühlung an einem 3-Niveau-SystemsHierzu wurden für Bereiche außerhalb des Lamb-Dicke Regimes Simulationen zur Laserkühlung an einem einzelnen Ion durchgeführt und soweit möglich experimentellüberprüft. Es wurden Kühlzeiten und Temperaturlimits für verschiedene Verstimmungen der Laser bestimmt.Diese stehen zum Teil im Widerspruch mit den bisherigen Annahmen.Die Kenntnis der Laserverstimmungen für die effektivste Lasekühlung sind notwendig, um bei weiterführenden Kühlmethoden eine hinreichendgute Vorkühlung erreichen zu können.Kristallstrukturen in der linearen Paulfalle.Hier wurden verschiedene theoretisch vorhergesagte Kristallstrukturen der Ionen bei abzählbaren Ionenanzahlenfür dreidimensionalen und quasi-zweidimensionaleSpeicherpotentiale mit experimentellen Werten verglichen. Dabei konnten Abweichungen zur Theoriefestgestellt werden. Ferner wurde die durchden Lichtdruck hervorgerufene Trennung von atomaren Zuständenin großen Ionenkristallen beobachtet.
Resumo:
Zusammenfassung Das ventrale Nervensystem (vNS) von Drosophila melanogaster entsteht aus zwei verschiedenen Populationen von Vorläufern, den mesektodermalen oder Mittellinien (ML)-Vorläufern und den neuroektodermalen Vorläufern oder Neuroblasten (NBs). Beide Populationen unterscheiden sich in vielen Aspekten, wie z.B. Genexpression, Teilungsverhalten und Zellstammbaum. Die ca. 30 NBs pro Hemisegment delaminieren als Einzelzellen aus dem Neuroektoderm und bilden ein invariantes subepidermales Muster in der neu entstandenen neuralen Zellschicht aus. Sie sind dort aufgrund ihrer Lage und der Expression spezifischer molekularer Marker individuell identifizierbar. Um die Mechanismen zu verstehen, die zur Determination und Differenzierung von ZNS Zellen führen, ist es eine Grundvoraussetzung, die Zellstammbäume aller Vorläufer zu kennen. Unter Verwendung des lipophilen in vivo Fluoreszenzfarbstoffs DiI wurden in früheren Arbeiten die Zellstammbäume der ML-Vorläufer und von 17 NBs, die aus der ventralen Hälfte des Neuroektoderms stammten, beschrieben. In der hier vorgelegten Arbeit wurden die Zellstammbäume von 13 NBs, die aus dem dorsalen Teil des Neuroektoderms delaminierten, beschrieben und 12 davon identifizierten Vorläufern zugeordnet. Darüber hinaus wurde ein bisher nicht beschriebener NB (NB 1-3) identifiziert und anhand morphologischer und molekularer Kriterien charakterisiert. Insgesamt produzierten die NBs ca. 120 Neurone und 22 bis 27 Gliazellen pro Hemineuromer, die in eine systematische Terminologie eingefügt wurden. Insgesamt besteht damit ein Neuromer des embryonalen vNS von Drosophila aus ca. 700 Neuronen (350 pro Hemineuromer) und 60 Gliazellen (30 pro Hemineuromer), die von NBs abstammen. Hinzu kommen ca. 12 ML-Neurone und 2 bis 4 ML-Glia pro Neuromer. Damit stammten die meisten Gliazellen im embryonalen vNS von Drosophila von NBs ab, die aus dem dorsalen Neuroektoderm hervorgingen. Zwei dieser NBs hatten ausschließlich gliale Nachkommen (NB 6-4A, GP) und fünf generierten sowohl Glia als auch Neurone (NBs 1-3, 2-5, 5-6, 6-4T, 7-4). Die übrigen sieben Zellstammbäume (NBs 2-4, 3-3, 3-5, 4-3, 4-4, 5-4, Klon y) waren rein neuronal. Es war ferner möglich, das bereits bekannte laterale Cluster von even-skipped exprimierenden Zellen (EL) dem Stammbaum von NB 3-3 zuzuordnen. Zusammen mit den zuvor beschriebenen Klonen sind damit mehr als 90% der thorakalen und abdominalen Zellstammbäume im embryonalen vNS von Drosophila bekannt. Darüber hinaus sind zuvor identifizierte Neurone und die meisten Gliazellen einem bestimmten Stammbaum zugeordnet und damit mit einer ontogenetischen Geschichte versehen. Dieser komplette Datensatz liefert eine Grundlage für die Interpretation mutanter Phänotypen und für zukünftige Untersuchungen über die Festlegung von Zellschicksalen und die Differenzierung von Zellen. Dies könnte dazu beitragen, das Verhältnis zwischen Herkunft der Zelle, Genexpression und Zellfunktion besser zu verstehen. Die wesentliche Funktion neuronaler Zellen ist die Integration und Weiterleitung von elektrischen Signalen. Mithin ist die Ausbildung elektrischer Eigenschaften (Elektrogenese) ein wesentlicher Aspekt der neuronalen Entwicklung. Um dabei zelltypspezifische Unterschiede zu finden, ist die Arbeit an definierten Zellpopulationen eine zwingende Voraussetzung. Es wurde daher hier ein in vitro System verwendet, das die selektive Kultivierung identifizierter embryonaler Vorläufer unter verschiedenen Bedingungen erlaubt. Da die Zellstammbäume der ML-Vorläufer besonders einfach sind und die ML-Zellen zudem in vielen Aspekten von den neuroektodermalen Zellen verschieden sind (s.o.), wurden die ML-Neurone als erstes Modellsystem ausgewählt. Unter Verwendung der Patch-clamp Technik wurden die in dieser definierten Zellpopulation auftretenden Ionenströme detailliert beschrieben. ML-Neurone exprimierten zumindest zwei verschiedene Typen von spannungsgesteuerten K+-Strömen (IA und IK), einen spannungsabhängigen Na+-Strom und zwei spannungsgesteuerte Ca(Ba)2+-Ströme. Darüber hinaus reagierten sie auf die Neurotransmitter ACh und GABA. Die meisten Ionenströme in den ML-Neuronen waren, trotz ihrer ontogenetischen Besonderheit, annähernd identisch mit denen, die in anderen Drosophila-Neuronen gefunden wurden. Ihnen fehlte allerdings eine anhaltende Komponente des Na+-Stroms, und sie waren homogen in ihrer Aktivität. Selbst bei anhaltender elektrischer Stimulation generierten sie immer nur ein Aktionspotential. Sie sind daher möglicherweise spezifisch hinsichtlich ihrer Signalleitungseigenschaften. Interessanterweise zeigte sich durch Verwendung verschiedener Kulturbedingungen, daß die Expression der spannungsgesteuerten K+-Kanäle weitgehend zellautonom erfolgte, während die Expression der anderen Ströme stark durch das Vohandensein von Neuritenkontakten beeinflußt wurde. Vorläufige Untersuchungen lassen darauf schließen, daß der involvierte molekulare Mechanismus unabhängig von synaptischer Transmission ist. In einer Art 'Ausblick' wurde schließlich die Validität von in vitro Ableitungen durch Analyse spannungsgesteuerter K+-Ströme in einer neuen in situ Präparation geprüft, die verschiedene Bereiche des Drosophila-ZNS für elektrophysiologische Untersuchungen zugänglich macht. Damit ist ein experimentelles System etabliert, daß den direkten Vergleich von in vitro und in situ Daten an definierten Zellpopulationen ermöglichen sollte.
Resumo:
Das Membranprotein LHCII ist ein Lichtsammelkomplex der höheren Pflanzen, der in vitro, ausgehend von bakteriell überexprimiertem Apoprotein, als Monomer und als Trimer rekonstituiert werden kann. Um Strukturunterschiede zwischen Monomeren und Trimeren zu bestimmen, wurden ortsspezifische Derivatisierungen des Proteins durchgeführt. Dazu wurden verschiedene Mutationen am LHCII vorgenommen. Das einzige Cystein des nativen, maturen LHCII wurde zunächst in ein Serin umgewandelt. Ausgehend von dieser Mutante wurden an fünf Positionen singuläre Cysteine eingefügt. Zugänglichkeitsuntersuchungen mit dem thiolreaktiven Farbstoff Rhodamine Red-Maleimid zeigten zum Teil Unterschiede zwischen Monomeren und Trimeren auf. Außerdem deutete eine zweiphasige Markierungskinetik eines der rekombinanten LHCII auf mindestens zwei konformelle Populationen in Detergenslösung. Die Beobachtungen dieser Arbeit wurden zudem genutzt, um im Strukturmodell des LHCII unklare Positionen näher zu beschreiben. Schließlich wurden einige der LHCII mit angekoppeltem Fluoreszenzfarbstoff spektroskopisch charakterisiert.
Resumo:
In Experimenten an lasergekühlten, in einer linearen Paulfalle gespeicherten $Ca^+$-Ionen wurde dieLebensdauer des metastabilen $3D_{5/2}$-Niveaus durch Beobachtung von Quantensprüngen einzelner Ionen zu 1100(18)msbestimmt. Systematische Fehler durch quenchende Stöße oder Stark-Mischen durch das Speicherfeld liegen unterhalb dererreichten Genauigkeit. Abweichungen von früheren Messungen konnten durch eine vernachlässigte Abhängigkeit derLebensdauer von der Laserleistung des Rückpumplasers erklärt werden. Das Endergebnis zeigt gute Übereinstimmung mitneueren theoretischen Werten. In weiteren Messungen an zehn Ionen wurde in einigen Messreihen eine deutliche Reduktionder Lebensdauer gegenüber einem einzelnen Ion festgestellt. Dabei wurden mehr koinzidente Zerfälle von zwei und dreiIonen beobachtet als für unabhängige Teilchen zu erwarten. In einem Ionenkristall wurde eine räumliche Trennung atomarer Zustände erreicht. Dabei wurde ein Teil der Ionen einesKristalls aus einigen hundert Ionen in den metastabilen Zustand gepumpt, der von den Kühllasern vollständig entkoppeltist. Durch sympathetische Kühlung werden diese Ionen weiterhin gekühlt und der Kristall schmilzt nicht. Durch denLichtdruck, den die Kühllaser ausgeüben, werden die Ionen nach atomaren Zuständen sortiert, weil die lasergekühltenIonen einen Rückstoß erfahren, die übrigen aber nicht. Für zukünftige Experimente wurden Verbesserungen des experimentellen Aufbaus auf den Weg gebracht. So wurden Methodenund Komponenten für eine verbesserte Frequenzstabilisierung der Diodenlaser entwickelt.
Resumo:
In dieser Arbeit wurde die intrinsische Tryptophanfluoreszenz von Proteinen nach Zwei-Photonen-Anregung untersucht. Als interessantes Modellsystem wurde das Sauerstofftransportprotein der Vogelspinne Eurypelma californicum gewählt. Zum einen besitzt das Protein 148 Tryptophan-Seitenketten, so daß deren geringer Absorptionsquerschnitt kompensiert werden kann und eventuell einzelne Proteine aufgrund ihrer Tryptophanfluoreszenz detektiert werden können. Zum anderen signalisiert diese Fluoreszenz die Sauerstoffbeladung, so daß die kooperative Sauerstoffbindung auf Einzelmolekülebene untersucht werden könnte. Als limitierender Faktor hat sich die Photostabilität der Tryptophane nach Zwei-Photonen-Anregung herausgestellt. Im Mittel können von einem Hämocyanin-Molekül drei Photonen detektiert werden, bevor alle 148 Tryptophan-Seitenketten geblichen sind. Dies ist ein für Einzelmolekülspektroskopie äußerst niedriger Wert. Trotz dieser geringen Photostabilität ist es zum erstem Mal gelungen, die Diffusion einzelner Proteine mit Hilfe ihrer intrinsischen Tryptophanfluoreszenz zu beobachten. Wenn in einer geeigneten Umgebung die Photostabilität der Tryptophane höher ist, so reicht die Zahl der detektierten Photonen aus, um einzelne Teilchen abzubilden. Überraschend hat sich ergeben, daß es möglich ist, durch Lichteinstrahlung von außen in das Sauerstoffbindungsgleichgewicht einzugreifen und die Reaktion des Proteins auf die Auslenkung aus dem Gleichgewichtszustand zu beobachten. Das intensitätsabhängige Sauerstoffbindungsverhalten wurde modelliert und an die Messungen angepaßt. Die lichtinduzierte Sauerstoffabgabe führt anscheinend nicht zu einem Konformationswechsel.
Resumo:
Ionenkäfige und speziell Penningfallen stellen sich in der Atomphysik als außergewöhnliche Werkzeuge heraus. Zum einen bieten diese 'Teilchencontainer' die Möglichkeit atomphysikalische Präzisionsmessungen durchzuführen und zum anderen stellen Penningfallen schwingungsfähige Systeme dar, in welchen nichtlineare dynamische Prozesse an gespeicherten Teilchen untersucht werden können. In einem ersten Teil der Arbeit wurde mit der in der Atomphysik bekannten Methode der optischen Mikrowellen-Doppelresonanz Spektroskopie der elektronische g-Faktor von Ca+ mit einer Genauigkeit von 4*10^{-8} zu gJ=2,00225664(9) bestimmt. g-Faktoren von Elektronen in gebundenen ionischen Systemen sind fundamentale Größen der Atomphysik, die Informationen über die atomare Wellenfunktion des zu untersuchenden Zustandes liefern. In einem zweiten Teil der Arbeit wurde hinsichtlich der Untersuchungen zur nichtlinearen Dynamik von parametrisch angeregten gespeicherten Elektronen beobachtet, dass ab bestimmten kritischen Teilchendichten in der Penningfalle die gespeicherten Elektronen kollektive Eigenschaften manifestieren. Weiterhin wurde bei der Anregung der axialen Eigenbewegung ein Schwellenverhalten der gemessenen Subharmonischen zur 2*omega_z-Resonanz beobachtet. Dieser Schwelleneffekt lässt sich mit der Existenz eines Dämpfungsmechanismus erklären, der auf die Elektronenwolke einwirkt, so dass eine Mindestamplitude der Anregung erforderlich ist, um diese Dämpfung zu überwinden. Durch Bestimmung der charakteristischen Kurven der gedämpften Mathieuschen Differentialgleichung konnte das beobachtete Phänomen theoretisch verstanden werden.
Resumo:
Ziel war die Entwicklung und Erprobung von Varianten des emotionalen Strooptests zur Analyse angstbezogener Aufmerksamkeitsprozesse bei Grundschulkindern. Dabei wurde überprüft, ob dieses kognitiv-experimentelle Verfahren zukünftig als objektives Testverfahren zur Diagnostik von Ängstlichkeit im Kindesalter geeignet ist. Ausgangspunkt waren zahlreiche Befunde für die Gruppe Erwachsener, wonach die Zuwendung auf bedrohliche Situationsmerkmalen für Ängstliche charakteristisch ist. Für das Kindesalter liegen hierzu nur wenige Studien mit zudem inkonsistenten Befundmuster vor. In insgesamt drei Studien wurde der emotionale Strooptest für das Grundschulalter adaptiert, indem Bilder bzw. altersentsprechendes Wortmaterial als Stimuli eingesetzt wurden. An den Studien nahmen nicht-klinische, nicht-ausgelesene Stichproben mit Kindern der zweiten bis vierten Grundschulklassen teil. Sowohl Ängstlichkeit als auch Zustandsangst der Kinder wurden jeweils über Selbst- und Fremdeinschätzungen (Eltern, Klassenlehrer, Versuchsleiter) erhoben. Die Ergebnisse sprechen für eine nur unzureichende Reliabilität emotionaler Interferenzeffekte. Auch ergaben sich (möglichenfalls infolge) keine substantiellen Hinweise auf differentielle angstbezogene Interferenzeffekte. Die Befunde sprechen vielmehr dafür, dass alle Kinder unabhängig von der Ängstlichkeit höhere Benennungszeiten für bedrohliche Stimuli im Vergleich zur Kontrollbedingung mit neutralen oder freundlichen Stimuli zeigten, wobei zugleich methodische Einflussfaktoren des Strooptests von Relevanz waren. Die Diskussion konzentriert sich auf entwicklungspsychologische Überlegungen sowie mögliche Bedingungen emotionaler Interferenzeffekte unter kritischer Berücksichtigung der Reliabilität emotionaler Stroopinterferenz.
Resumo:
Der AMANDA-II Detektor ist primär für den richtungsaufgelösten Nachweis hochenergetischer Neutrinos konzipiert. Trotzdem können auch niederenergetische Neutrinoausbrüche, wie sie von Supernovae erwartet werden, mit hoher Signifikanz nachgewiesen werden, sofern sie innerhalb der Milchstraße stattfinden. Die experimentelle Signatur im Detektor ist ein kollektiver Anstieg der Rauschraten aller optischen Module. Zur Abschätzung der Stärke des erwarteten Signals wurden theoretische Modelle und Simulationen zu Supernovae und experimentelle Daten der Supernova SN1987A studiert. Außerdem wurden die Sensitivitäten der optischen Module neu bestimmt. Dazu mussten für den Fall des südpolaren Eises die Energieverluste geladener Teilchen untersucht und eine Simulation der Propagation von Photonen entwickelt werden. Schließlich konnte das im Kamiokande-II Detektor gemessene Signal auf die Verhältnisse des AMANDA-II Detektors skaliert werden. Im Rahmen dieser Arbeit wurde ein Algorithmus zur Echtzeit-Suche nach Signalen von Supernovae als Teilmodul der Datennahme implementiert. Dieser beinhaltet diverse Verbesserungen gegenüber der zuvor von der AMANDA-Kollaboration verwendeten Version. Aufgrund einer Optimierung auf Rechengeschwindigkeit können nun mehrere Echtzeit-Suchen mit verschiedenen Analyse-Zeitbasen im Rahmen der Datennahme simultan laufen. Die Disqualifikation optischer Module mit ungeeignetem Verhalten geschieht in Echtzeit. Allerdings muss das Verhalten der Module zu diesem Zweck anhand von gepufferten Daten beurteilt werden. Dadurch kann die Analyse der Daten der qualifizierten Module nicht ohne eine Verzögerung von etwa 5 Minuten geschehen. Im Falle einer erkannten Supernova werden die Daten für die Zeitdauer mehrerer Minuten zur späteren Auswertung in 10 Millisekunden-Intervallen archiviert. Da die Daten des Rauschverhaltens der optischen Module ansonsten in Intervallen von 500 ms zur Verfgung stehen, ist die Zeitbasis der Analyse in Einheiten von 500 ms frei wählbar. Im Rahmen dieser Arbeit wurden drei Analysen dieser Art am Südpol aktiviert: Eine mit der Zeitbasis der Datennahme von 500 ms, eine mit der Zeitbasis 4 s und eine mit der Zeitbasis 10 s. Dadurch wird die Sensitivität für Signale maximiert, die eine charakteristische exponentielle Zerfallszeit von 3 s aufweisen und gleichzeitig eine gute Sensitivität über einen weiten Bereich exponentieller Zerfallszeiten gewahrt. Anhand von Daten der Jahre 2000 bis 2003 wurden diese Analysen ausführlich untersucht. Während die Ergebnisse der Analyse mit t = 500 ms nicht vollständig nachvollziehbare Ergebnisse produzierte, konnten die Resultate der beiden Analysen mit den längeren Zeitbasen durch Simulationen reproduziert und entsprechend gut verstanden werden. Auf der Grundlage der gemessenen Daten wurden die erwarteten Signale von Supernovae simuliert. Aus einem Vergleich zwischen dieser Simulation den gemessenen Daten der Jahre 2000 bis 2003 und der Simulation des erwarteten statistischen Untergrunds kann mit einem Konfidenz-Niveau von mindestens 90 % gefolgert werden, dass in der Milchstraße nicht mehr als 3.2 Supernovae pro Jahr stattfinden. Zur Identifikation einer Supernova wird ein Ratenanstieg mit einer Signifikanz von mindestens 7.4 Standardabweichungen verlangt. Die Anzahl erwarteter Ereignisse aus dem statistischen Untergrund beträgt auf diesem Niveau weniger als ein Millionstel. Dennoch wurde ein solches Ereignis gemessen. Mit der gewählten Signifikanzschwelle werden 74 % aller möglichen Vorläufer-Sterne von Supernovae in der Galaxis überwacht. In Kombination mit dem letzten von der AMANDA-Kollaboration veröffentlicheten Ergebnis ergibt sich sogar eine obere Grenze von nur 2.6 Supernovae pro Jahr. Im Rahmen der Echtzeit-Analyse wird für die kollektive Ratenüberhöhung eine Signifikanz von mindestens 5.5 Standardabweichungen verlangt, bevor eine Meldung über die Detektion eines Supernova-Kandidaten verschickt wird. Damit liegt der überwachte Anteil Sterne der Galaxis bei 81 %, aber auch die Frequenz falscher Alarme steigt auf bei etwa 2 Ereignissen pro Woche. Die Alarm-Meldungen werden über ein Iridium-Modem in die nördliche Hemisphäre übertragen, und sollen schon bald zu SNEWS beitragen, dem weltweiten Netzwerk zur Früherkennung von Supernovae.
Resumo:
The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C++ programming language. This system, which is now also in use for other projects besides xloops, is the main focus of this thesis. The implementation of GiNaC as a C++ library sets it apart from other algebraic systems. Our results prove that a highly efficient symbolic manipulator can be designed in an object-oriented way, and that having a very fine granularity of objects is also feasible. The xloops-related parts of this work consist of a new implementation, based on GiNaC, of functions for calculating one-loop Feynman integrals that already existed in the original xloops program, as well as the addition of supplementary modules belonging to the interface between the library of integral functions and the diagram generator.
Resumo:
In der vorliegenden Arbeit wurde die Fluoreszenzdynamik einzelner CdSe-Halbleiternanokristalle und isolierter Nanokristall/Farbstoff-Komplexe untersucht. Dazu wurde ein konfokales Mikroskop aufgebaut, mit dem Spektren und Zerfallskurven einzelner Fluorophore bei Raumtemperatur und tiefen Temperaturen bis zu 1.4 Kelvin gemessen werden konnten. Mit diesem Aufbau konnten erstmals Fluoreszenzlebenszeiten einzelner Nanokristalle mit der Methode des zeitkorrelierten Einzelphotonenzählens (timecorrelated single photon counting, TCSPC) bei Raumtemperatur und später auch bei tiefen Temperaturen bestimmt werden. Zur Auswertung der Daten wurden verschiedene Methoden entwickelt, um die Fluoreszenzdynamik aus den exponentiellen oder nicht-exponentiellen Zerfallskurven zu extrahieren. Die Interpretation der berechneten Ratenverteilung lässt auf eine Korrelation zwischen der Fluoreszenzintensität und der Fluoreszenzlebensdauer schließen, deren Ursache auf Quenchermoleküle zurückgeführt wird. Mit geringer werdender Fluoreszenzintensität zerfallen die Abklingkurven schneller und die Lebensdauern sind breiter verteilt. Messungen bei tiefen Temperaturen ermöglichte es zusätzlich die exzitonische Feinstruktur des Nanokristalls genauer zu Untersuchen. Hier zeigt sich eine deutliche Unterscheidung zwischen einer langsamen, temperaturabhängigen Zerfallskomponente (mit Zerfalssraten bis in den Mikrosekundenbereich) und einer schnellen, temperaturunabhängigen Zerfallsrate. Die gemessenen Ratenverteilungen bestätigten die berechneten theoretischen Zerfallsraten, jedoch auch weitere, mit bisherigen theoretischen Modellen nicht vereinbare, Raten. Schließlich wurden noch der Energietransfer zwischen Nanokristall-Farbstoffmolekül-Komplexen untersucht. Gemessene Abklingkurven der Nanokristall-Komponente bei 2 Kelvin wiesen gegenüber dem isolierten Nanokristall keine entsprechenden langsamen Zerfallsraten auf.
Resumo:
Im Rahmen der Arbeit wurde ein neuartiges Aerosol-Ionenfallen-Massenspektrometer (AIMS) aufgebaut und umfassend charakterisiert. Mit dem AIMS kann die chemische Zusammensetzung der verdampfbaren Komponente (bei etwa 600 °C) von Aerosolpartikeln quantitativ und on-line bestimmt werden. Die Durchmesser der Teilchen, die analysiert werden können, liegen zwischen etwa 30 und 500 nm. Der experimentelle Aufbau greift auf ein bereits gut charakterisiertes Einlasssystem des Aerodyne Aerosol-Massenspektrometers (AMS) zurück, das einen Partikeleinlass, bestehend aus einer kritischen Düse und einer aerodynamischen Linse, einen Verdampfer für die Aerosolteilchen und eine Elektronenstoß-Ionenquelle enthält. Das kommerzielle AMS verwendet entweder ein lineares Quadrupol-Massenfilter (Q-AMS) oder ein Flugzeit-Massenspektrometer (ToF-AMS). Im AIMS hingegen wird eine dreidimensionale Ionenfalle als Massenanalysator eingesetzt. Dadurch eröffnen sich unter anderem Möglichkeiten zur Durchführung von MSn-Studien und Ionen/Molekül-Reaktionsstudien. Das Massenspektrometer und wichtige Teile der Steuerungselektronik wurden am Max-Planck-Institut für Chemie in Mainz entworfen und hergestellt. Das AIMS wird von einem PC und einer Software, die in der Programmiersprache LabVIEW verfasst ist, gesteuert. Aufgrund seiner Kompaktheit ist das Instrument auch für den Feldeinsatz geeignet. Mit der Software Simion 7.0 wurden umfangreiche Simulationsstudien durchgeführt. Diese Studien beinhalten Simulationen zur Ermittlung der optimalen Spannungseinstellungen für den Ionentransfer von der Ionenquelle in die Ionenfalle und eine Abschätzung der Sammeleffizienz der Ionenfalle, die gut mit einem gemessenen Wert übereinstimmt. Charakterisierungsstudien zeigen einige instrumentelle Merkmale des AIMS auf. Es wurde beispielsweise ein Massenauflösungsvermögen von 807 für m/z 121 gefunden, wenn eine Analyserate von 1780 amu/s verwendet wird. Wird die Analyserate verringert, dann lässt sich das Massenauflösungsvermögen noch erheblich steigern. Bei m/z 43 kann dann ein Wert von > 1500 erzielt werden, wodurch sich Ionenfragmente wie C2H3O+ (m/z 43.0184) und C3H7+ (m/z 43.0548) voneinander trennen lassen. Der Massenbereich des AIMS lässt sich durch resonante Anregung erweitern; dies wurde bis zu einer Masse von 1000 amu getestet. Kalibrationsmessungen mit laborgenerierten Partikeln zeigen eine hervorragende Linearität zwischen gemessenen Signalstärken und erzeugten Aerosol-Massenkonzentrationen. Diese Studien belegen im Zusammenhang mit den gefundenen Nachweisgrenzen von Nitrat (0.16 μg/m³) und Sulfat (0.65 μg/m³) aus Aerosolpartikeln, dass das AIMS für quantitative Messungen von atmosphärischem Aerosol geeignet ist. Ein Vergleich zwischen dem AIMS und dem Q-AMS für Nitrat in städtischem Aerosol zeigt eine gute Übereinstimmung der gefundenen Messwerte. Für laborgenerierte Polystyren-Latexpartikel wurde eine MS/MS-Studie unter der Anwendung von collision induced dissociation (CID) durchgeführt. Das Verhältnis von Fragmentionen zu Analytionen wurde zu einem Wert von > 60% bestimmt. In der Zukunft können ähnliche MS/MS-Studien auch für atmosphärische Aerosolpartikel angewandt werden, wodurch sich neue Perspektiven für die Speziation von Aerosolbestandteilen eröffnen. Dann sollen vor allem Kondensationsprozesse, das heißt die Bildung von sekundärem Aerosol, detailliert untersucht werden.
Resumo:
Um mit sehr hoher Geschwindigkeit Sinnesreize zur Weiterverarbeitung übertragen zu können, besitzen im Ruhezustand Dauerimpulse liefernde Rezeptorzellen in Sinnesorganen, wie z.B. der Netzhaut (Retina), spezialisierte glutamaterge Synapsen, die durch präsynapti-sche Körperchen (SK) charakterisiert sind, die außerdem nur in Parenchymzellen der Zirbel-drüse vorkommen. SK binden mit hoher Affinität Neurotransmittervesikel und zeigen licht- bzw. reizabhängige morphologische Veränderungen. Sie dienen der Speicherung, eventuell auch dem Transport dieser Vesikel zum Ort der Reizübertragung, der nahen aktiven Zone der Ribbonsynapse. Um Dynamik und Funktion der Zellorganellen zu verstehen, ist es wichtig, ihre genaue Topo-graphie und dreidimensionale (3D) Struktur unter verschiedenen Bedingungen zu kennen. So wurden aus Serienschnitten der Retina und Zirbeldrüse mit Hilfe geeigneter, teils selbst programmierter Software 3D-Rekonstruktionen der SK durchgeführt. Untersucht wurden die ersten und zweiten Synapsen der Sehbahn in Retinae von Mensch, Maus und Ratte, Zapfen-terminale des Hühnchens und SK in Zirbeldrüsen von Ratte, Meerschweinchen und Kaninchen. Analysiert wurde zu verschiedenen Zeitpunkten der Photoperiode oder unter experimentellen Bedingungen entnommenes Frischgewebe sowie Material aus Organkultu-ren. Außerdem wurden SK unter diversen Bedingungen quantifiziert, wobei eine neue Zähl-methode entwickelt wurde, die auf einer Modifikation des Disektors basiert und die Quantifi-zierung auch anderer seltener Ultrastrukturen am Elektronenmikroskop ermöglicht. Im Gegensatz zur etablierten Zählmethode, die die Profilzahl von SK in einer definierten Fläche (PZ) angibt, liefert die vorgestellte Methode die aussagekräftigere Zahl der SK in definierten Volumina und hängt weder von deren Form noch Größe ab. Diverse Kalkulationen zeigten, daß eine Umrechnung von am selben Material gewonnenen PZ in validere Disektor Werte nicht präzise genug möglich ist. Um sinnvolle Aussagen zur Quantität von SK machen zu können, ist es daher erforderlich, die Methode für jedes Tier einer identisch behandelten Gruppe anzuwenden. Es konnte gezeigt werden, daß SK eine konstante Dicke von 35 nm haben. In der Retina sind sie meist nur in einer Ebene C-förmig gebogene Bänder, weshalb sie auch als "synaptic ribbons" bezeichnet werden, oder Platten mit Breite zu Höhe Verhältnissen zwischen 6:1 bis 3:1. Die elektronendichten, unter Normalbedingungen durch regelmäßig polymerisierte Dimere des Hauptproteins RIBEYE pentalamellären SK binden über dünne Proteinbrücken glutamathaltige Neurotransmittervesikel. Ihre untere lange schmale Kante ist über feines elektronendichtes Material an einem, als arciform density (ad) bezeichneten Plaque der Zell-membran verankert, der die Form einer gebogenen Rinne hat. Die zumeist senkrecht darauf stehenden SK zeigen an ihrer membranfernen langen Kante zu Beginn der Lichtphase, ins-besondere aber unter Dauerlicht partiell verdickte Ränder, die auf An- bzw. Abbauvorgänge hinweisen. Diese Veränderungen waren nur in Stäbchenterminalen und Pinealozyten in Ver-bindung mit dem Auftreten kleinerer klumpiger bis kugelförmiger SK nachweisbar und zeig-ten sich in den Schnitten als runde oder irreguläre Profile, die dann neben den "üblichen" stabförmigen SK-Anschnitten vorlagen. Die 3D-Rekonstruktion von Stäbchenterminalen der menschlichen Retina zeigte, daß diese entsprechend der Zahl ihrer SK 1-3 Ribbonsynapsen aufweisen. Letztere bestehen aus einem an der Zellmembran senkrecht über eine ad verankerten SK und der aktiven Zone, die einem ca. 200 nm breiten Bereich der Zellmembran in Fortsetzung der ad nach seitlich oben entspricht. Die boomerang- bis hufeisenförmigen SK haben 2 parallele flache Hauptflächen. Postsynaptisch liegen zwei Horizontalzellfortsätze, welche mit variabeln Aufspaltungen von einem engen Hilus aus tief in Stäbchenendkolben invaginiert sind. Sie verbreitern sich termi-nal und zeigen große breite oft aufgefächerte bzw. verzweigte Auftreibungen. Die Ribbon-synapsen sind in die zwischen solchen Endauftreibungen entstehenden Rinnen eingesenkt. Unterhalb ihrer ad berühren sich die Horizontalzellterminale. Etwas darunter enden 1-2 ca. 100 nm breite Bipolarzelldendriten, die vom Zentrum der Invagination des Stäbchenterminals zum Hilus hin dünner werden, um zum Soma invaginierender ON-Bipolarzellen weiterzulau-fen. Da die Zahl der in den Stäbchenendkolben eintretenden Fortsätze variabel ist, fanden sich Konstellationen von 1-3 SK, 1-3 Horizontal- und 1-4 Bipolarzellterminalen, wie sie auch in der Literatur beschrieben sind. Drei zentrale Ausschnitte menschlicher Zapfenpedikel wurden aus lückenlosen Serienschnit-ten mit ihren Mitochondrien, SK und den in Form von Triaden hier invaginierenden postrib-bonsynaptischen Fortsätzen rekonstruiert. Der Grundbauplan der Ribbonsynapsen ist hier dem der Stäbchen ähnlich, jedoch sind die SK kürzer, die Invaginationen deutlich kleiner und nie verzweigt, die Bipolarzelldendriten breiter und die Horizontalzellfortsätze terminal weniger stark und nur rundlich aufgetrieben. Zapfen-SK sind nur in einer Ebene schwach gebogene Bänder. Die gefundene Zahl von Zapfen SK paßt zu Literaturdaten, deren Zusammenfas-sung für Primaten foveanah 10-20 und peripher 30-40 SK zeigt. In Bipolarzellaxonen des Menschen waren SK nicht immer über leistenartige Membranplaques am Plasmalemm ver-ankert. Die hier flachen Ribbonsynapsen zeigten kleinere bandförmige oder nur ca. 250 x 150 x 35 nm große plattenförmige SK mit etwas größerem Abstand zu den aktiven Zonen als in Photorezeptoren. Bei BALB/c Mäusen, deren SK besonders deutlich auf Veränderungen der Photoperiode oder experimentelle Bedingungen reagieren, zeigten Rekonstruktionen von Stäbchenribbon-synapsen am Ende der Dunkelphase band- bis boomerangförmige SK und weder Klumpen noch Kugeln. Im ersten Drittel und gegen Ende der Lichtphase fanden sich jedoch ca. 20 Prozent solch veränderter SK. Gleichzeitig waren die mittleren Abschnitte vieler SK unter beiden Lichtbedingungen dünner als am Ende der Dunkelphase. Die langen, oft mehrfach gebogenen und verdrehten Zapfen-SK dieser Mäuse waren unabhängig von den Lichtbedin-gungen oft deutlich größer als die der Stäbchen, wohingegen beim Menschen Zapfen-SK re-lativ gerade, bandförmige Zellorganellen geringerer Größe als in Stäbchen darstellten. Während in Stäbchenterminalen nur ausnahmsweise mehr als ein größeres bandförmiges SK (neben eventuellen kugelförmigen) vorlag, zeigten sich in den Zapfen orts- und spezies-abhängig 15 bis über 25 meist bandförmige Organellen, die in wenigen Fällen mit zwei ge-legentlich sogar 3 verschiedenen Triaden aus 2 Horizontal- und einem Bipolarzellfortsatz ver-bunden waren. Dies ist bei BALB/c Mäusen, die weniger, aber größere Zapfen-SK zeigten, häufiger als beim Menschen. Die SK der Bipolarzellen in der inneren plexiformen Schicht waren speziesübergreifend meist lange Bänder oder kleine Platten mit ca. 250 x 150 nm großen Hauptflächen und nur ge-ringen Verdrehungen. Verschiedene Bipolarzelltypen haben unterschiedlich viele SK. Im Rahmen der Arbeit erstmals erstellte 3D-Rekonstruktion ektopischer synaptischer Körper-chen (eSK) konnten belegen, daß diese in Bipolarzelldendriten lokalisiert sind. Die kleinen, leicht gebogenen, 35 nm dicken Platten, deren große Oberflächen Dimensionen von meist nur ca. 100 x 200 nm hatten, sind praktisch nie an der Zellmembran verankert, sondern ste-hen in einigen Fällen über zu langen Tubuli fusionierte Vesikel mit dem Interzellularspalt in Verbindung. Dies könnte ein Hinweis auf eine "compound" Endo- oder Exozytose sein. Sel-ten finden sich zwei, ausnahmsweise auch drei parallel zueinander angeordnete SK im Inne-ren der Bipolarzelldendriten, meistens nahe deren Eintritt in Stäbchenendkolben. Im Gegen-satz zur Ratte fanden sich eSK bei seit Geburt unter Dauerdunkelheit gehaltenen BALB/c Mäusen sogar im in Stäbchen- bzw. Zapfenterminal invaginierten Abschnitt von Bipolarzell-dendriten. Neben plattenförmigen SK lagen bei diesen Mäusen auch innen hohle klumpen-förmige Organellen in Stäbchenbipolarzelldendriten vor. Unter Organkultur und Ca++-Entzug fanden sich in Stäbchen die massivsten Veränderungen von SK, die entweder als Klumpen oder Kugeln vorlagen oder massive Protrusionen an ei-nem kleinen plattenförmigen Abschnitt zeigten, der noch an der ad befestigt blieb. Die Be-funde deuten darauf hin, daß Licht über Kalziumentzug zu Verklumpungen an SK und zur Abschnürung von klumpen- bis kugelförmigen SK Fragmenten führt. Bei der Rekonstruktion mit anti-β-Dystroglykan Immunogold-markierter Zapfenterminalen der Hühnchenretina konnte erstmals gezeigt werden, daß sich dieses zum Dystrophin-assozierten Glykoproteinkomplex gehörende Protein in perisynaptischen Fortsätzen der Pho-torezeptoren seitlich und an ihren Spitzen fand, während Horizontal- und Bipolarzellfortsätze nicht markiert waren. Dies deutet auf eine neue strukturelle oder funktionelle Domäne in Pho-torezeptorterminalen hin, die eine noch im Detail zu klärende Rolle bei der synaptischen Transmission spielt, da bei Mutationen im Dystrophin-assoziierten Proteinkomplex eine Ver-änderung der synaptischen Kommunikation in der äußeren plexiformen Schicht zu beobach-ten ist. In der Zirbeldrüse sind die meisten SK wenig gebogene, flache, plattenförmige Strukturen, die bei der Ratte meist ca. 300x150x35 nm groß sind. Daneben gibt es deutlich längere bandförmige Organellen und unter Normalbedingungen bei Ratte und Hühnchen praktisch keine, bei Meerschweinchen nur wenige klumpige oder kugelförmige SK. Pinealozyten der Meerschweinchenzirbeldrüse weisen üblicherweise Felder parallel gruppierter plattenförmi-ger synaptischer Körperchen auf. Unter Dauerlicht zeigten sich an der Membran benachbar-ter Zellen einander gegenüberliegende Felder stark verbogener, partiell verdickter SK, die vermutlich aus verschmolzenen Einzelplatten entstanden waren sowie deutlich mehr kugeli-ge bzw. klumpige SK. Die Organellen nehmen nachts an Größe zu, wodurch sich ihre Ober-fläche vergrößert, bei Ratten nimmt sie um 19,3 Prozent von 0,041 auf 0,0501 µm² zu. Da die plattenförmigen SK eine konstante Dicke von 35 nm hatten, läßt sich so ein durchschnitt-liches Volumen von 1,47x10-3 µm³ für 12.00 und von 1,75x10-3 µm³ für Mitternacht mit einer Zunahme von 0,28x10-3 µm³ (entspricht 19,3 %) errechnen. Der Vergleich von Pinealocyten-SK von unter LD 4:20 zu LD 20:4 gehaltenen Ratten zeigte unter LD 20:4 insignifikant mehr SK, die signifikant längere Profile hatten, was auf eine Größenzunahme der Organellen hin-deutet. Überlegungen und mathematische Berechnungen, was Profillängenmessungen bedeuten und wieviele Profile für sinnvolle Vergleiche ausgewertet werden müßten, werden kritisch diskutiert. Die selbst erhobenen Befunde werden im Kontext mit allen verfügbaren Literaturdaten de origine, dem Auftreten von SK in der Ontogenese sowie SK betreffenden pathologischen und Altersveränderungen betrachtet. Hierbei deutet die Analyse der Chronobiologie von SK in quantitativer und morphologischer Hinsicht auf eine Abhängigkeit von der Photoperiode bzw. Licht und Dunkelheit und nicht auf eine endogene zirkadiane Rhythmik hin. Die oberhalb funktionell wichtiger Ca++-Känale lokalisierten SK setzen in Photorezeptoren die Lichtinformation in exozytierte Glutamatquanten um, wobei das Glutamat an verschiedenen postsynaptischen Orten wirkt. Die zuvor nie so anschaulich durch 3D-Stereoanimationen visualisierten Befunde zeigen, daß die Morphologie von SK hier für eine maximal schnelle Freisetzung der gebundenen Transmittervesikel an in unmittelbarer Nähe gelegenen aktiven Zonen der Ribbonsynapsen optimiert ist. Der molekulare Aufbau von SK wird ultrastrukturell nachvollzogen und die Funktion der Organellen diskutiert. Diesbezüglich ist die Vesikelspei-cherung erwiesen, das "Priming" für die Exozytose beinahe bewiesen, eine Koordinations-funktion für multivesikuläre Transmitterfreisetzung ist denkbar, während eine Förderband-funktion eher unwahrscheinlich ist. In breve haben die im Rahmen dieser Habilitation ge-wonnenen Erkenntnisse und entwickelten Methoden einige Beiträge zur Klärung des mor-phologisch funktionellen Gesamtverständnisses der Ribbonsynapsen geleistet.
Resumo:
Obwohl die funktionelle Magnetresonanztomographie (fMRI) interiktaler Spikes mit simultaner EEG-Ableitung bei Patienten mit fokalen Anfallsleiden seit einigen Jahren zur Lokalisation beteiligter Hirnstrukturen untersucht wird, ist sie nach wie vor eine experimentelle Methode. Um zuverlässig Ergebnisse zu erhalten, ist insbesondere die Verbesserung des Signal-zu-Rausch-Verhältnisses in der statistischen Bilddatenauswertung von Bedeutung. Frühere Untersuchungen zur sog. event-related fMRI weisen auf einen Zusammenhang zwischen Häufigkeit von Einzelreizen und nachfolgender hämodynamischer Signalantwort in der fMRI hin. Um einen möglichen Einfluss der Häufigkeit interiktaler Spikes auf die Signalantwort nachzuweisen, wurden 20 Kinder mit fokaler Epilepsie mit der EEG-fMRI untersucht. Von 11 dieser Patienten konnten die Daten ausgewertet werden. In einer zweifachen Analyse mit dem Softwarepaket SPM99 wurden die Bilddaten zuerst ausschließlich je nach Auftreten interiktaler Spikes der „Reiz“- oder „Ruhe“-Bedingung zugeordnet, unabhängig von der jeweiligen Anzahl der Spikes je Messzeitpunkt (on/off-Analyse). In einem zweiten Schritt wurden die „Reiz“- Bedingungen auch differenziert nach jeweiliger Anzahl einzelner Spikes ausgewertet (häufigkeitskorrelierte Analyse). Die Ergebnisse dieser Analysen zeigten bei 5 der 11 Patienten eine Zunahme von Sensitivität und Signifikanzen der in der fMRI nachgewiesenen Aktivierungen. Eine höhere Spezifität konnte hingegen nicht gezeigt werden. Diese Ergebnisse weisen auf eine positive Korrelation von Reizhäufigkeit und nachfolgender hämodynamischer Antwort auch bei interiktalen Spikes hin, welche für die EEG-fMRI nutzbar ist. Bei 6 Patienten konnte keine fMRI-Aktivierung nachgewiesen werden. Mögliche technische und physiologische Ursachen hierfür werden diskutiert.
Resumo:
The work presented in this thesis deals with complex materials, which were obtained by self-assembly of monodisperse colloidal particles, also called colloidal crystallization. Two main fields of interest were investigated, the first dealing with the fabrication of colloidal monolayers and nanostructures, which derive there from. The second turned the focus on the phononic properties of colloidal particles, crystals, and glasses. For the fabrication of colloidal monolayers a method is introduced, which is based on the sparse distribution of dry colloidal particles on a parent substrate. In the ensuing floating step the colloidal monolayer assembles readily at the three-phase-contact line, giving a 2D hexagonally ordered film under the right conditions. The unique feature of this fabrication process is an anisotropic shrinkage, which occurs alongside with the floating step. This phenomenon is exploited for the tailored structuring of colloidal monolayers, leading to designed hetero-monolayers by inkjet printing. Furthermore, the mechanical stability of the floating monolayers allows the deposition on hydrophobic substrates, which enables the fabrication of ultraflat nanostructured surfaces. Densely packed arrays of crescent shaped nanoparticles have also been synthesized. It is possible to stack those arrays in a 3D manner allowing to mutually orientate the individual layers. In a step towards 3D mesoporous materials a methodology to synthesize hierarchically structured inverse opals is introduced. The deposition of colloidal particles in the free voids of a host inverse opal allows for the fabrication of composite inverse opals on two length scales. The phononic properties of colloidal crystals and films are characterized by Brillouin light scattering (BLS). At first the resonant modes of colloidal particles consisting of polystyrene, a copolymer of methylmethacrylate and butylacrylate, or of a silica core-PMMA shell topography are investigated, giving insight into their individual mechanical properties. The infiltration of colloidal films with an index matching liquid allows measuring the phonon dispersion relation. This leads to the assignment of band gaps to the material under investigation. Here, two band gaps could be found, one originating from the fcc order in the colloidal crystal (Bragg gap), the other stemming from the vibrational eigenmodes of the colloidal particles (hybridization gap).
Resumo:
This thesis presents a new imaging technique for ultracold quantum gases. Since the first observation of Bose-Einstein condensation, ultracold atoms have proven to be an interesting system to study fundamental quantum effects in many-body systems. Most of the experiments use optical imaging rnmethods to extract the information from the system and are therefore restricted to the fundamental limitation of this technique: the best achievable spatial resolution that can be achieved is comparable to the wavelength of the employed light field. Since the average atomic distance and the length scale of characteristic spatial structures in Bose-Einstein condensates such as vortices and solitons is between 100 nm and 500 nm, an imaging technique with an adequate spatial resolution is needed. This is achieved in this work by extending the method of scanning electron microscopy to ultracold quantum gases. A focused electron beam is scanned over the atom cloud and locally produces ions which are subsequently detected. The new imaging technique allows for the precise measurement of the density distribution of a trapped Bose-Einstein condensate. Furthermore, the spatial resolution is determined by imaging the atomic distribution in one-dimensional and two-dimensional optical lattices. Finally, the variety of the imaging method is demonstrated by the selective removal of single lattice site. rn