Experimentelle Untersuchungen zur embryonalen Entwicklung identifizierter Vorläuferzellen des zentralen Nervensystems von Drosophila melanogaster
Data(s) |
2000
|
---|---|
Resumo |
Zusammenfassung Das ventrale Nervensystem (vNS) von Drosophila melanogaster entsteht aus zwei verschiedenen Populationen von Vorläufern, den mesektodermalen oder Mittellinien (ML)-Vorläufern und den neuroektodermalen Vorläufern oder Neuroblasten (NBs). Beide Populationen unterscheiden sich in vielen Aspekten, wie z.B. Genexpression, Teilungsverhalten und Zellstammbaum. Die ca. 30 NBs pro Hemisegment delaminieren als Einzelzellen aus dem Neuroektoderm und bilden ein invariantes subepidermales Muster in der neu entstandenen neuralen Zellschicht aus. Sie sind dort aufgrund ihrer Lage und der Expression spezifischer molekularer Marker individuell identifizierbar. Um die Mechanismen zu verstehen, die zur Determination und Differenzierung von ZNS Zellen führen, ist es eine Grundvoraussetzung, die Zellstammbäume aller Vorläufer zu kennen. Unter Verwendung des lipophilen in vivo Fluoreszenzfarbstoffs DiI wurden in früheren Arbeiten die Zellstammbäume der ML-Vorläufer und von 17 NBs, die aus der ventralen Hälfte des Neuroektoderms stammten, beschrieben. In der hier vorgelegten Arbeit wurden die Zellstammbäume von 13 NBs, die aus dem dorsalen Teil des Neuroektoderms delaminierten, beschrieben und 12 davon identifizierten Vorläufern zugeordnet. Darüber hinaus wurde ein bisher nicht beschriebener NB (NB 1-3) identifiziert und anhand morphologischer und molekularer Kriterien charakterisiert. Insgesamt produzierten die NBs ca. 120 Neurone und 22 bis 27 Gliazellen pro Hemineuromer, die in eine systematische Terminologie eingefügt wurden. Insgesamt besteht damit ein Neuromer des embryonalen vNS von Drosophila aus ca. 700 Neuronen (350 pro Hemineuromer) und 60 Gliazellen (30 pro Hemineuromer), die von NBs abstammen. Hinzu kommen ca. 12 ML-Neurone und 2 bis 4 ML-Glia pro Neuromer. Damit stammten die meisten Gliazellen im embryonalen vNS von Drosophila von NBs ab, die aus dem dorsalen Neuroektoderm hervorgingen. Zwei dieser NBs hatten ausschließlich gliale Nachkommen (NB 6-4A, GP) und fünf generierten sowohl Glia als auch Neurone (NBs 1-3, 2-5, 5-6, 6-4T, 7-4). Die übrigen sieben Zellstammbäume (NBs 2-4, 3-3, 3-5, 4-3, 4-4, 5-4, Klon y) waren rein neuronal. Es war ferner möglich, das bereits bekannte laterale Cluster von even-skipped exprimierenden Zellen (EL) dem Stammbaum von NB 3-3 zuzuordnen. Zusammen mit den zuvor beschriebenen Klonen sind damit mehr als 90% der thorakalen und abdominalen Zellstammbäume im embryonalen vNS von Drosophila bekannt. Darüber hinaus sind zuvor identifizierte Neurone und die meisten Gliazellen einem bestimmten Stammbaum zugeordnet und damit mit einer ontogenetischen Geschichte versehen. Dieser komplette Datensatz liefert eine Grundlage für die Interpretation mutanter Phänotypen und für zukünftige Untersuchungen über die Festlegung von Zellschicksalen und die Differenzierung von Zellen. Dies könnte dazu beitragen, das Verhältnis zwischen Herkunft der Zelle, Genexpression und Zellfunktion besser zu verstehen. Die wesentliche Funktion neuronaler Zellen ist die Integration und Weiterleitung von elektrischen Signalen. Mithin ist die Ausbildung elektrischer Eigenschaften (Elektrogenese) ein wesentlicher Aspekt der neuronalen Entwicklung. Um dabei zelltypspezifische Unterschiede zu finden, ist die Arbeit an definierten Zellpopulationen eine zwingende Voraussetzung. Es wurde daher hier ein in vitro System verwendet, das die selektive Kultivierung identifizierter embryonaler Vorläufer unter verschiedenen Bedingungen erlaubt. Da die Zellstammbäume der ML-Vorläufer besonders einfach sind und die ML-Zellen zudem in vielen Aspekten von den neuroektodermalen Zellen verschieden sind (s.o.), wurden die ML-Neurone als erstes Modellsystem ausgewählt. Unter Verwendung der Patch-clamp Technik wurden die in dieser definierten Zellpopulation auftretenden Ionenströme detailliert beschrieben. ML-Neurone exprimierten zumindest zwei verschiedene Typen von spannungsgesteuerten K+-Strömen (IA und IK), einen spannungsabhängigen Na+-Strom und zwei spannungsgesteuerte Ca(Ba)2+-Ströme. Darüber hinaus reagierten sie auf die Neurotransmitter ACh und GABA. Die meisten Ionenströme in den ML-Neuronen waren, trotz ihrer ontogenetischen Besonderheit, annähernd identisch mit denen, die in anderen Drosophila-Neuronen gefunden wurden. Ihnen fehlte allerdings eine anhaltende Komponente des Na+-Stroms, und sie waren homogen in ihrer Aktivität. Selbst bei anhaltender elektrischer Stimulation generierten sie immer nur ein Aktionspotential. Sie sind daher möglicherweise spezifisch hinsichtlich ihrer Signalleitungseigenschaften. Interessanterweise zeigte sich durch Verwendung verschiedener Kulturbedingungen, daß die Expression der spannungsgesteuerten K+-Kanäle weitgehend zellautonom erfolgte, während die Expression der anderen Ströme stark durch das Vohandensein von Neuritenkontakten beeinflußt wurde. Vorläufige Untersuchungen lassen darauf schließen, daß der involvierte molekulare Mechanismus unabhängig von synaptischer Transmission ist. In einer Art 'Ausblick' wurde schließlich die Validität von in vitro Ableitungen durch Analyse spannungsgesteuerter K+-Ströme in einer neuen in situ Präparation geprüft, die verschiedene Bereiche des Drosophila-ZNS für elektrophysiologische Untersuchungen zugänglich macht. Damit ist ein experimentelles System etabliert, daß den direkten Vergleich von in vitro und in situ Daten an definierten Zellpopulationen ermöglichen sollte. |
Formato |
application/pdf |
Identificador |
urn:nbn:de:hebis:77-921 |
Idioma(s) |
ger |
Publicador |
Universität Mainz 10: Biologie. 10: Biologie |
Direitos |
http://ubm.opus.hbz-nrw.de/doku/urheberrecht.php |
Palavras-Chave | #Life sciences |
Tipo |
Thesis.Doctoral |