445 resultados para VACANCY
Resumo:
The nitrogen-vacancy (NV) center is a paramagnetic defect in diamond with applications as a qubit. Here, we investigate its electronic structure by using ab initio density functional theory for five different NV center models of two different cluster sizes. We describe the symmetry and energetics of the low-lying states and compare the optical frequencies obtained to experimental results. We compute the major transition of the negatively charged NV centers to within 25–100 meV accuracy and find that it is energetically favorable for substitutional nitrogens to donate an electron to NV0. The excited state of the major transition and the NV0 state with a neutral donor nitrogen are found to be close in energy.
Resumo:
The nitrogen-vacancy (NV) center in diamond has shown great promise for quantum information due to the ease of initializing the qubit and of reading out its state. Here we show the leading mechanism for these effects gives results opposite from experiment; instead both must rely on new physics. Furthermore, NV centers fabricated in nanometer-sized diamond clusters are stable, motivating a bottom-up qubit approach, with the possibility of quite different optical properties to bulk.
Resumo:
The negatively charged nitrogen-vacancy centre in diamond is a unique defect centre in diamond that possesses properties highly suited to many applications, including quantum information processing, quantum metrology, and biolabelling. Although the unique properties of the centre have been extensively documented and utilised, a detailed understanding of the physics of the centre has not yet been achieved. Indeed there persists a number of points of contention regarding the electronic structure of the centre, such as the ordering of the dark intermediate singlet states. Without a sound model of the centre’s electronic structure, the understanding of the system’s unique dynamical properties can not effectively progress. In this work, the molecular model of the defect centre is fully developed to provide a self consistent model of the complete electronic structure of the centre. The application of the model to describe the effects of electric, magnetic and strain interactions, as well as the variation of the centre’s fine structure with temperature, provides an invaluable tool to those studying the centre and a means to design future experiments and ab initio studies of this important defect centre.
Resumo:
The N-14, N-15, and C-13 hyperfine interactions in the ground state of the negatively charged nitrogen vacancy (NV-) center have been investigated using electron-paramagnetic-resonance spectroscopy. The previously published parameters for the N-14 hyperfine interaction do not produce a satisfactory fit to the experimental NV- electron-paramagnetic-resonance data. The small anisotropic component of the NV- hyperfine interaction can be explained from dipolar interaction between the nitrogen nucleus and the unpaired-electron probability density localized on the three carbon atoms neighboring the vacancy. Optical spin polarization of the NV- ground state was used to enhance the electron-paramagnetic-resonance sensitivity enabling detailed study of the hyperfine interaction with C-13 neighbors. The data confirmed the identification of three equivalent carbon nearest neighbors but indicated the next largest C-13 interaction is with six, rather than as previously assumed three, equivalent neighboring carbon atoms.
Resumo:
Despite the numerous experimental and theoretical studies on the negatively charged nitrogen vacancy center (NV-) in diamond and the predictions that the neutral nitrogen vacancy center (NV0) should have an S=1/2 ground state, NV0 has not previously been detected by electron paramagnetic resonance (EPR). We report new EPR data on a trigonal nitrogen-containing defect in diamond with an S=3/2 excited state populated via optical excitation. Analysis of the spin Hamiltonian parameters and the wavelength dependence of the optical excitation leads to assignment of this S=3/2 state to the (4)A(2) excited state of NV0. This identification, together with an examination of the electronic structure of the NV centers in diamond, provides a plausible explanation for the lack of observation (to date) of an EPR signal from the NV0 ground state.
Resumo:
The position-dependent oxygen vacancy dynamics induced by a biased scanning probe microscopy tip in Samarium doped ceria thin films grown on MgO (100) substrates is investigated. The granularity of the samples gives rise to spatially dependent local electrochemical activity, as explored by electrochemical strain microscopy. The kinetics of the oxygen vacancy relaxation process is investigated separately for grain boundaries and grains. Higher oxygen vacancy concentration variation and slower diffusion are observed in the grain boundary regions as compared to the grains.
Resumo:
We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.
Resumo:
Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.
Resumo:
Using density functional theory with the inclusion of on-site Coulomb Correction, the O vacancy formation energies of CexZr1-xO2 solid solutions with a series of Ce/Zr ratios are calculated, and a model to understand the results is proposed. It consists of electrostatic and structural relaxation terms, and the latter is found to play a vital role in affecting the O vacancy formation energies. Using this model, several long-standing questions in the field, such as why ceria with 50% ZrO2 usually exhibit the best oxygen storage capacity, can be explained. Some implications of the new interpretation are also discussed.
Resumo:
Deposition of 0.5 ML of Cu on W(100) leads to the formation of a sharp c(2 x 2) structure when the surface is annealed at 800 K. A LEED intensity analysis reveals that the Cu atoms are adsorbed displacively into W sites, forming an ordered 2D surface alloy. Due to the lattice mismatch between copper and tungsten, a substantial buckling of the first layer of the alloy is also observed. The clean, bulk terminated W(100) surface is only just stable relative to the c(2 x 2) vacancy covered W(100) surface. This relative stability of the vacancy structure explains the driving force behind the formation of this alloy.
Resumo:
In a recent paper [Phys. Rev. B 50, 3477 (1994)], P. Fratzl and O. Penrose present the results of the Monte Carlo simulation of the spinodal decomposition problem (phase separation) using the vacancy dynamics mechanism. They observe that the t1/3 growth regime is reached faster than when using the standard Kawasaki dynamics. In this Comment we provide a simple explanation for the phenomenon based on the role of interface diffusion, which they claim is irrelevant for the observed behavior.
Resumo:
A Monte Carlo simulation study of the vacancy-assisted domain growth in asymmetric binary alloys is presented. The system is modeled using a three-state ABV Hamiltonian which includes an asymmetry term. Our simulated system is a stoichiometric two-dimensional binary alloy with a single vacancy which evolves according to the vacancy-atom exchange mechanism. We obtain that, compared to the symmetric case, the ordering process slows down dramatically. Concerning the asymptotic behavior it is algebraic and characterized by the Allen-Cahn growth exponent x51/2. The late stages of the evolution are preceded by a transient regime strongly affected by both the temperature and the degree of asymmetry of the alloy. The results are discussed and compared to those obtained for the symmetric case.