954 resultados para Two components system
Resumo:
The simple gas ethylene affects numerous physiological processes in the growth and development of higher plants. With the use of molecular genetic approaches, we are beginning to learn how plants perceive ethylene and how this signal is transduced. Components of ethylene signal transduction are defined by ethylene response mutants in Arabidopsis thaliana. The genes corresponding to two of these mutants, etr1 and etr1, have been cloned. The ETR1 gene encodes a homolog of two-component regulators that are known almost exclusively in prokaryotes. The two-component regulators in prokaryotes are involved in the perception and transduction of a wide range of environmental signals leading to adaptive responses. The CTR1 gene encodes a homolog of the Raf family of serine/threonine protein kinases. Raf is part of a mitogen-activated protein kinase cascade known to regulate cell growth and development in mammals, worms, and flies. The ethylene response pathway may, therefore, exemplify a conserved protein kinase cascade regulated by a two-component system. The dominance of all known mutant alleles of ETR1 may be due to either constitutive activation of the ETR1 protein or dominant interference of wild-type activity. The discovery of Arabidopsis genes encoding proteins related to ETR1 suggests that the failure to recover recessive etr1 mutant alleles may be due to the presence of redundant genes.
Resumo:
A 2(3-1) factorial experimental design was used to evaluate the performance of a perforated rotating disc contactor to extract alpha-toxin from the fermented broth of Clostridium perfringens Type A by aqueous two-phase system of polyethylene glycol-phosphate salts. The influence of three independent variables, specifically the dispersed phase flowrate, the continuous phase flowrate and the disc rotational speed, was investigated on the hold up, the mass transfer coefficient, the separation efficiency and the purification factor, taken as the response variables. The optimum dispersed phase flowrate was 3.0 mL/min for all these responses. Besides, maximum values of hold up (0.80), separation efficiency (0. 10) and purification factor (2.4) were obtained at this flowrate using the lowest disc rotational speed (35 rpm), while the optimum mass transfer coefficient (0. 165 h(-1)) was achieved at the highest agitation level (140 rpm). The results of this study demonstrated that the dispersed phase flowrate strongly influenced the performance of PRDC, in that both the mass transfer coefficient and hold up increased with this parameter. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
An investigation of clavulanic acid behavior in an aqueous two-phase micellar system employing the surfactants n-decyltetraethylene oxide (C(10)E(4)) and dodecyldimethylamine oxide (DDAO) was carried out. According to the results, clavulanic acid partitions evenly between the two phases of DDAO micellar system, mixed DDAO C(10)E(4) micellar system, as well as C10E4 micellar system. Therefore, electrostatic interactions between positively charged DDAO-containing micelles and negatively charged drug were not strong enough to influence the partitioning. Nevertheless, clavulanic acid extraction from Streptomyces clavuligerus fermentation broth in C(10)E(4) micellar system employing a previous protein denaturation step provided recovery of 52% clavulanic acid with removal of 70% of the contaminant proteins, which is already promising as a purification strategy. (C) 2011 International Union of Biochemistry and Molecular Biology, Inc. Volume 58, Number 2, March/April 2011, Pages 103-108. E-mail: corangel@usp.br
Resumo:
BACKGROUND: Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). METHODS AND FINDINGS: We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. CONCLUSIONS: Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.
Resumo:
A novel two-component system, CbrA-CbrB, was discovered in Pseudomonas aeruginosa; cbrA and cbrB mutants of strain PAO were found to be unable to use several amino acids (such as arginine, histidine and proline), polyamines and agmatine as sole carbon and nitrogen sources. These mutants were also unable to use, or used poorly, many other carbon sources, including mannitol, glucose, pyruvate and citrate. A 7 kb EcoRI fragment carrying the cbrA and cbrB genes was cloned and sequenced. The cbrA and cbrB genes encode a sensor/histidine kinase (Mr 108 379, 983 residues) and a cognate response regulator (Mr 52 254, 478 residues) respectively. The amino-terminal half (490 residues) of CbrA appears to be a sensor membrane domain, as predicted by 12 possible transmembrane helices, whereas the carboxy-terminal part shares homology with the histidine kinases of the NtrB family. The CbrB response regulator shows similarity to the NtrC family members. Complementation and primer extension experiments indicated that cbrA and cbrB are transcribed from separate promoters. In cbrA or cbrB mutants, as well as in the allelic argR9901 and argR9902 mutants, the aot-argR operon was not induced by arginine, indicating an essential role for this two-component system in the expression of the ArgR-dependent catabolic pathways, including the aruCFGDB operon specifying the major aerobic arginine catabolic pathway. The histidine catabolic enzyme histidase was not expressed in cbrAB mutants, even in the presence of histidine. In contrast, proline dehydrogenase, responsible for proline utilization (Pru), was expressed in a cbrB mutant at a level comparable with that of the wild-type strain. When succinate or other C4-dicarboxylates were added to proline medium at 1 mM, the cbrB mutant was restored to a Pru+ phenotype. Such a succinate-dependent Pru+ property was almost abolished by 20 mM ammonia. In conclusion, the CbrA-CbrB system controls the expression of several catabolic pathways and, perhaps together with the NtrB-NtrC system, appears to ensure the intracellular carbon: nitrogen balance in P. aeruginosa.
Resumo:
A revolution\0\0\0 in earthmoving, a $100 billion industry, can be achieved with three components: the GPS location system, sensors and computers in bulldozers, and SITE CONTROLLER, a central computer system that maintains design data and directs operations. The first two components are widely available; I built SITE CONTROLLER to complete the triangle and describe it here. SITE CONTROLLER assists civil engineers in the design, estimation, and construction of earthworks, including hazardous waste site remediation. The core of SITE CONTROLLER is a site modelling system that represents existing and prospective terrain shapes, roads, hydrology, etc. Around this core are analysis, simulation, and vehicle control tools. Integrating these modules into one program enables civil engineers and contractors to use a single interface and database throughout the life of a project.
Resumo:
This study proposes an objective integrated seasonal forecasting system for producing well-calibrated probabilistic rainfall forecasts for South America. The proposed system has two components: ( i) an empirical model that uses Pacific and Atlantic sea surface temperature anomalies as predictors for rainfall and ( ii) a multimodel system composed of three European coupled ocean - atmosphere models. Three-month lead austral summer rainfall predictions produced by the components of the system are integrated ( i. e., combined and calibrated) using a Bayesian forecast assimilation procedure. The skill of empirical, coupled multimodel, and integrated forecasts obtained with forecast assimilation is assessed and compared. The simple coupled multimodel ensemble has a comparable level of skill to that obtained using a simplified empirical approach. As for most regions of the globe, seasonal forecast skill for South America is low. However, when empirical and coupled multimodel predictions are combined and calibrated using forecast assimilation, more skillful integrated forecasts are obtained than with either empirical or coupled multimodel predictions alone. Both the reliability and resolution of the forecasts have been improved by forecast assimilation in several regions of South America. The Tropics and the area of southern Brazil, Uruguay, Paraguay, and northern Argentina have been found to be the two most predictable regions of South America during the austral summer. Skillful rainfall forecasts are generally only possible during El Nino or La Nina years rather than in neutral years.
Resumo:
70SiO(2)-30HfO(2) planar waveguides, doped with Er(3+) concentrations ranging from 0.3 to 1 mol %, were prepared by sol-gel route, using dip-coating deposition on silica glass substrates. The waveguides show high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 or 514.5 nm continuous-wave laser light, the waveguides show the (4)I(13/2)-->(4)I(15/2) emission band with a bandwidth of 48 nm. The spectral features are found independent both on erbium content and excitation wavelength. The (4)I(13/2) level decay curves presented a single-exponential profile, with a lifetime between 2.9 and 5.0 ms, depending on the erbium concentration. (C) 2002 American Institute of Physics.
Resumo:
Linear single-stage vibration isolation systems have a limitation on their performance, which can be overcome passively by using linear two-stage isolations systems. It has been demonstrated by several researchers that linear single-stage isolation systems can be improved upon by using nonlinear stiffness elements, especially for low-frequency vibrations. In this paper, an investigation is conducted into whether the same improvements can be made to a linear two-stage isolation system using the same methodology for both force and base excitation. The benefits of incorporating geometric stiffness nonlinearity in both upper and lower stages are studied. It is found that there are beneficial effects of using nonlinearity in the stiffness in both stages for both types of excitation. Further, it is found that this nonlinearity causes the transmissibility at the lower resonance frequency to bend to the right, but the transmissibility at the higher resonance frequency is not affected in the same way. Generally, it is found that a nonlinear two-stage system has superior isolation performance compared to that of a linear two-stage isolator.
Resumo:
The transport properties of the two-dimensional system in HgTe-based quantum wells containing simultaneously electrons and holes of low densities are examined. The Hall resistance, as a function of perpendicular magnetic field, reveals an unconventional behavior, different from the classical N-shaped dependence typical for bipolar systems with electron-hole asymmetry. The quantum features of magnetotransport are explained by means of numerical calculation of the Landau level spectrum based on the Kane Hamiltonian. The origin of the quantum Hall plateau sigma(xy) = 0 near the charge neutrality point is attributed to special features of Landau quantization in our system.
Resumo:
Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor nu = 0.
Resumo:
The partitioning of Clavulanic Acid (CA) in a novel inexpensive and stable aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The aqueous two-phase systems are formed by mixing both polymers with a salt (NaCl or Na2SO4) and an aqueous solution of CA. The stability of CA on the presence of both polymers was investigated and it was observed that these polymers do not degrade the biomolecule. The effect of PEG-molecular size, polymer concentrations on the commercial CA partitioning has been studied, at 25 degrees C. The data showed that commercial CA was preferentially partitioned for the PEG-rich phase with a partition coefficient (K-CA) between 1 and 12 in the PEG/NaPA aqueous two phase systems supplemented with NaCl and Na2SO4. The partition to the PEG phase was increased in the systems with high polymer concentrations. Furthermore, Na2SO4 caused higher CA preference for the PEG-phase than NaCl. The systems having a composition with 10 wt.% of PEG4000, 20 wt.% of NaPA8000 and 6 wt.% of Na2SO4 were selected as the optimal ones in terms of recovery of CA from fermented broth of Streptomyces clavuligerus. The partitioning results (K-CA = 9.15 +/- 1.06) are competitive with commercial extraction methods of CA (K-CA = 11.91 +/- 2.08) which emphasizes that the system PEG/NaPA/Na2SO4 can be used as a new process to CA purification/concentration from fermented broth. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
It is an important and difficult challenge to protect modern interconnected power system from blackouts. Applying advanced power system protection techniques and increasing power system stability are ways to improve the reliability and security of power systems. Phasor-domain software packages such as Power System Simulator for Engineers (PSS/E) can be used to study large power systems but cannot be used for transient analysis. In order to observe both power system stability and transient behavior of the system during disturbances, modeling has to be done in the time-domain. This work focuses on modeling of power systems and various control systems in the Alternative Transients Program (ATP). ATP is a time-domain power system modeling software in which all the power system components can be modeled in detail. Models are implemented with attention to component representation and parameters. The synchronous machine model includes the saturation characteristics and control interface. Transient Analysis Control System is used to model the excitation control system, power system stabilizer and the turbine governor system of the synchronous machine. Several base cases of a single machine system are modeled and benchmarked against PSS/E. A two area system is modeled and inter-area and intra-area oscillations are observed. The two area system is reduced to a two machine system using reduced dynamic equivalencing. The original and the reduced systems are benchmarked against PSS/E. This work also includes the simulation of single-pole tripping using one of the base case models. Advantages of single-pole tripping and comparison of system behavior against three-pole tripping are studied. Results indicate that the built-in control system models in PSS/E can be effectively reproduced in ATP. The benchmarked models correctly simulate the power system dynamics. The successful implementation of a dynamically reduced system in ATP shows promise for studying a small sub-system of a large system without losing the dynamic behaviors. Other aspects such as relaying can be investigated using the benchmarked models. It is expected that this work will provide guidance in modeling different control systems for the synchronous machine and in representing dynamic equivalents of large power systems.
Resumo:
The use of lashing means, for example load securing straps or nets, is often time-consuming, especially for courier, express and parcel-services (CEP) using a lot stops. The following article describes the development of an automated load securing system with a three-dimensional-preformed net. Mainly two components interact in this system. On the one hand, an anti-skid system is integrated, which uses the advantages of a low-friction surface for loading and the anti-slip properties of an adhesive coating for the transport. On the other hand, a flexibly adaptive net consisting of high-performance synthetic fibers and integrated shorteners lash different sized transport units. Especially, the automatic lashing should increase the acceptance of the drivers for the new load securing system.
Resumo:
In animal cell lysates the multiprotein heat-shock protein 90 (hsp90)-based chaperone complexes consist of hsp70, hsp40, and p60. These complexes act to convert steroid hormone receptors to their steroid-binding state by assembling them into heterocomplexes with hsp90, p23, and one of several immunophilins. Wheat germ lysate also contains a hsp90-based chaperone system that can assemble the glucocorticoid receptor into a functional heterocomplex with hsp90. However, only two components of the heterocomplex-assembly system, hsp90 and hsp70, have thus far been identified. Recently, purified mammalian p23 preadsorbed with JJ3 antibody-protein A-Sepharose pellets was used to isolate a mammalian p23-wheat hsp90 heterocomplex from wheat germ lysate (J.K. Owens-Grillo, L.F. Stancato, K. Hoffmann, W.B. Pratt, and P. Krishna [1996] Biochemistry 35: 15249–15255). This heterocomplex was found to contain an immunophilin(s) of the FK506-binding class, as judged by binding of the radiolabeled immunosuppressant drug [3H]FK506 to the immune pellets in a specific manner. In the present study we identified the immunophilin components of this heterocomplex as FKBP73 and FKBP77, the two recently described high-molecular-weight FKBPs of wheat. In addition, we present evidence that the two FKBPs bind hsp90 via tetratricopeptide repeat domains. Our results demonstrate that binding of immunophilins to hsp90 via tetratricopeptide repeat domains is a conserved protein interaction in plants. Conservation of this protein-to-protein interaction in both plant and animal cells suggests that it is important for the biological action of the high-molecular-weight immunophilins.