843 resultados para Sobolev Spaces Besov Spaces Carnot Groups Sub-Laplacians


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nesta tese são estudados espaços de Besov de suavidade generalizada em espaços euclidianos, numa classe de fractais designados conjuntos-h e em estruturas abstractas designadas por espaços-h. Foram obtidas caracterizações e propriedades para estes espaços de funções. Em particular, no caso de espaços de Besov em espaços euclidianos, foram obtidas caracterizações por diferenças e por decomposições em átomos não suaves, foi provada uma propriedade de homogeneidade e foram estudados multiplicadores pontuais. Para espaços de Besov em conjuntos-h foi obtida uma caracterização por decomposições em átomos não suaves e foi construído um operador extensão. Com o recurso a cartas, os resultados obtidos para estes espaços de funções em fractais foram aplicados para definir e trabalhar com espaços de Besov de suavidade generalizada em estruturas abstractas. Nesta tese foi também estudado o laplaciano fractal, considerado a actuar em espaços de Besov de suavidade generalizada em domínios que contêm um conjunto-h fractal. Foram obtidos resultados no contexto de teoria espectral para este operador e foi estudado, à custa deste operador, um problema de Dirichlet fractal no contexto de conjuntos-h.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study Toeplitz operators on the Besov spaces in the case of the open unit disk. We prove that a symbol satisfying a weak Lipschitz type condition induces a bounded Toeplitz operator. Such symbols do not need to be bounded functions or have continuous extensions to the boundary of the open unit disk. We discuss the problem of the existence of nontrivial compact Toeplitz operators, and also consider Fredholm properties and prove an index formula.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we show a local-in-time existence result for the 3D micropolar fluid system in the framework of Besov-Morrey spaces. The initial data class is larger than the previous ones and contains strongly singular functions and measures. © 2013 Springer Basel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present thesis, we discuss the main notions of an axiomatic approach for an invariant Harnack inequality. This procedure, originated from techniques for fully nonlinear elliptic operators, has been developed by Di Fazio, Gutiérrez, and Lanconelli in the general settings of doubling Hölder quasi-metric spaces. The main tools of the approach are the so-called double ball property and critical density property: the validity of these properties implies an invariant Harnack inequality. We are mainly interested in the horizontally elliptic operators, i.e. some second order linear degenerate-elliptic operators which are elliptic with respect to the horizontal directions of a Carnot group. An invariant Harnack inequality of Krylov-Safonov type is still an open problem in this context. In the thesis we show how the double ball property is related to the solvability of a kind of exterior Dirichlet problem for these operators. More precisely, it is a consequence of the existence of some suitable interior barrier functions of Bouligand-type. By following these ideas, we prove the double ball property for a generic step two Carnot group. Regarding the critical density, we generalize to the setting of H-type groups some arguments by Gutiérrez and Tournier for the Heisenberg group. We recognize that the critical density holds true in these peculiar contexts by assuming a Cordes-Landis type condition for the coefficient matrix of the operator. By the axiomatic approach, we thus prove an invariant Harnack inequality in H-type groups which is uniform in the class of the coefficient matrices with prescribed bounds for the eigenvalues and satisfying such a Cordes-Landis condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 44A15, 44A35, 46E30

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are two main aims of the paper. The first one is to extend the criterion for the precompactness of sets in Banach function spaces to the setting of quasi-Banach function spaces. The second one is to extend the criterion for the precompactness of sets in the Lebesgue spaces $L_p(\Rn)$, $1 \leq p < \infty$, to the so-called power quasi-Banach function spaces. These criteria are applied to establish compact embeddings of abstract Besov spaces into quasi-Banach function spaces. The results are illustrated on embeddings of Besov spaces $B^s_{p,q}(\Rn)$, $0spaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Participation Space Studies explore eParticipation in the day-to-day activities of local, citizen-led groups, working to improve their communities. The focus is the relationship between activities and contexts. The concept of a participation space is introduced in order to reify online and offline contexts where people participate in democracy. Participation spaces include websites, blogs, email, social media presences, paper media, and physical spaces. They are understood as sociotechnical systems: assemblages of heterogeneous elements, with relevant histories and trajectories of development and use. This approach enables the parallel study of diverse spaces, on and offline. Participation spaces are investigated within three case studies, centred on interviews and participant observation. Each case concerns a community or activist group, in Scotland. The participation spaces are then modelled using a Socio-Technical Interaction Network (STIN) framework (Kling, McKim and King, 2003). The participation space concept effectively supports the parallel investigation of the diverse social and technical contexts of grassroots democracy and the relationship between the case-study groups and the technologies they use to support their work. Participants’ democratic participation is supported by online technologies, especially email, and they create online communities and networks around their goals. The studies illustrate the mutual shaping relationship between technology and democracy. Participants’ choice of technologies can be understood in spatial terms: boundaries, inhabitants, access, ownership, and cost. Participation spaces and infrastructures are used together and shared with other groups. Non-public online spaces, such as Facebook groups, are vital contexts for eParticipation; further, the majority of participants’ work is non-public, on and offline. It is informational, potentially invisible, work that supports public outputs. The groups involve people and influence events through emotional and symbolic impact, as well as rational argument. Images are powerful vehicles for this and digital images become an increasingly evident and important feature of participation spaces throughout the consecutively conducted case studies. Collaboration of diverse people via social media indicates that these spaces could be understood as boundary objects (Star and Griesemer, 1989). The Participation Space Studies draw from and contribute to eParticipation, social informatics, mediation, social shaping studies, and ethnographic studies of Internet use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Working on the d-torus, we show that Besov spaces Bps(Lp(logL)a) modelled on Zygmund spaces can be described in terms of classical Besov spaces. Several other properties of spaces Bps(Lp(logL)a) are also established. In particular, in the critical case s=d/p, we characterize the embedding of Bpd/p(Lp(logL)a) into the space of continuous functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.