927 resultados para SOLID-STATE FERMENTATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thermotolerant strain of Rhizopus oryzae was grown in three agro-industrial by-products: brewers’ rice, corn grits and wheat bran. Different substrates, cultivation time, moisture content, additional nitrogen sources, pH and temperature of incubation were evaluated aiming to optimize growing conditions. The highest enzymatic activity was observed after 24 h of cultivation using wheat bran as substrate with the following salt solutions: NH4NO3, MgSO4.7H2O and (NH4)2SO4 0.1% at temperature of 35°C. It was observed that changes in the pH range 4.0-6.0 did not significantly affect α-amylase activity. The optimum operation conditions were 75°C and pH 4.5. The enzymes remained stable at 75°C in the absence of substrate for 25 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40A degrees C for 72 h and 96 h, respectively. Addition of glucose or fructose (a parts per thousand yen1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)(2)HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS-PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60A degrees C and 4.0-4.5, respectively. Both invertases were stable for 1 h at 60A degrees C with half-lives of 10 min at 70A degrees C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters K-m and V-max for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot(-1), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current studies about lipase production involve the use of agro-industrial residues and newly isolated microorganisms aimed at increasing economic attractiveness of the process. Based on these aspects, the main objective of this work is to perform the partial characterization of enzymatic extracts produced by a newly isolated Penicillium crustosum in solid-state fermentation. Lipase extract presented optimal temperature and pH of 37 A degrees C and 9-10, respectively. The concentrated enzymatic extract showed more stability at 25 A degrees C and pH 7. The enzymes kept 100% of their enzymatic activity until 60 days of storage at 4 and -10 A degrees C. The stability under calcium salts indicated that the hydrolytic activity presented decay with the increase of calcium concentration. The specificity under several substrates indicated good enzyme activities in triglycerides from C4 to C18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of beta-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 +/- A 411.2 U g(-1), while beta-glucosidase production was increased about 2.6-fold, reaching 20.7 +/- A 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis beta-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for beta-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The beta-glucosidase maintained about 95 % of its activity after 26 h in water at 55 A degrees C, with half-lives of 15.7 h at 60 A degrees C and 5.1 h at 65 A degrees C. The presence of xylose during heat treatment at 65 A degrees C protected beta-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 A degrees C. Xylose stimulated beta-glucosidase activity up to 1.7-fold, at 200 mmol L-1. The notable features of both xylanase and beta-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500U mL -1 or 300Ug -1 of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme fromSSF and designated PL I, II, III, IV, V, andVI, while five peaks were obtained fromcrude enzyme fromSmF and labeled PL I', II', III', IV', and VII'. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35°C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45°C. Crude enzyme from SmF and PL III' showed thermophilic profiles of activity, with maximum activity at 60 and 55°C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0-10.0 and PL III was most stable in the pH range 4.0-7.0. Crude enzyme from SmF retained 70%-80% of its maximum activity in the acid-neutral pH range (4.0-7.0), but PIII showed high stability at alkaline pH (7.5-9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55°C. The differing behavior of the enzymes with respect to pH and temperature suggests that they are different isozymes. Copyright © 2010 Viviani Ferreira et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14% recovery. The native molecular mass of the glycoprotein (12% of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55 degrees C and 4.5. The enzyme was stable for more than 1 hr at 50 degrees C and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80% of activity after storage at 4 degrees C by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn(2+), Mg(2+) and Co(2+), and inhibited by Cu(2+), Hg(2+) and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. K(d) and V(max) values were 18 mM and 189 U/mg protein using sucrose as substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polystyrene beads, impregnated with mineral salts/glutamine medium as inert support, were used to produce L-glutaminase from Vibrio costicola by solid-state fermentation. Maximum enzyme yield, 88 U/g substrate, was after 36 h. Glucose at 10 g/kg enhanced the enzyme yield by 66%. The support system allowed glutaminase to be recovered with higher specific activity and lower viscosity than when a wheat-bran system was used

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pectin lyase (Pl) and polygalacturonase (Pg) production by Thermoascus aurantiacus 179-5 was carried out by means of solid-state determination using orange bagasse and wheat bran as a carbon sources. Pg and Pl had optimum activity at pH 5.0 and 10.5 respectively. Maximal activity of the enzymes were determined at 65 °C. Pg was stable in the acidic to neutral pH range and at 60 °C for 1 h. whereas Pl was stable at acidic pH and at 60 °C for 5 h. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, the application of a class of separated local field NMR experiments named dipolar chemical shift correlation (DIPSHIFT) for probing motions in the intermediate regime is discussed. Simple analytical procedures based on the Anderson-Weiss (AW) approximation are presented. In order to establish limits of validity of the AW based formulas, a comparison with spin dynamics simulations based on the solution of the stochastic Liouville-von-Neumann equation is presented. It is shown that at short evolution times (less than 30% of the rotor period), the AW based formulas are suitable for fitting the DIPSHIFT curves and extracting kinetic parameters even in the case of jumplike motions. However, full spin dynamics simulations provide a more reliable treatment and extend the frequency range of the molecular motions accessible by DIPSHIFT experiments. As an experimental test, molecular jumps of imidazol methyl sulfonate and trimethylsulfoxonium iodide, as well as the side-chain motions in the photoluminescent polymer poly[2-methoxy-5-(2(')-ethylhexyloxy)-1,4-phenylenevinylene], were characterized. Possible extensions are also discussed. (c) 2008 American Institute of Physics.