1000 resultados para Realitat virtual
Resumo:
We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant"s virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.
Resumo:
We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant"s virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.
Resumo:
In the rubber hand illusion tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first person perspective. For half the participants the VB was consistent in posture and movement with their own body, and in the other half there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared to the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full virtual body. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity - with proprioception and tactile sensations on the real body integrated with the visual presence of the virtual body. The results are interpreted in the framework of a"body matrix" recently introduced into the literature.
Resumo:
Previous studies have examined the experience of owning a virtual surrogate body or body part through specific combinations of cross-modal multisensory stimulation. Both visuomotor (VM) and visuotactile (VT) synchronous stimulation have been shown to be important for inducing a body ownership illusion, each tested separately or both in combination. In this study we compared the relative importance of these two cross-modal correlations, when both are provided in the same immersive virtual reality setup and the same experiment. We systematically manipulated VT and VM contingencies in order to assess their relative role and mutual interaction. Moreover, we present a new method for measuring the induced body ownership illusion through time, by recording reports of breaks in the illusion of ownership ("breaks") throughout the experimental phase. The balance of the evidence, from both questionnaires and analysis of the breaks, suggests that while VM synchronous stimulation contributes the greatest to the attainment of the illusion, a disruption of either (through asynchronous stimulation) contributes equally to the probability of a break in the illusion.
Resumo:
Cognitive neuroscientists have discovered various experimental setups that suggest that our body representation is surprisingly flexible, where the brain can easily be tricked into the illusion that a rubber hand is your hand or that a manikin body is your body. These multisensory illusions work well in immersive virtual reality (IVR). What is even more surprising is that such embodiment induces perceptual, attitudinal and behavioural changes that are concomitant with the displayed body type. Here we outline some recent findings in this field, and suggest that this offers a powerful tool for neuroscience, psychology and a new path for IVR.
Resumo:
Virtual Reality environments that reproduce typical contexts associated with tobacco use may be useful for aiding smoking cessation. The main objective of this study was to assess the capacity of eight environments to produce the craving to smoke and determine the relation of craving to nicotine dependence and level of presence. The results show that all the environments were able to generate the desire to smoke; a direct relation was found between sense of presence and craving.
Resumo:
Major challenges must be tackled for brain-computer interfaces to mature into an established communications medium for VR applications, which will range from basic neuroscience studies to developing optimal peripherals and mental gamepads and more efficient brain-signal processing techniques.
Resumo:
A brain-computer interface (BCI) is a new communication channel between the human brain and a computer. Applications of BCI systems comprise the restoration of movements, communication and environmental control. In this study experiments were made that used the BCI system to control or to navigate in virtual environments (VE) just by thoughts. BCI experiments for navigation in VR were conducted so far with synchronous BCI and asynchronous BCI systems. The synchronous BCI analyzes the EEG patterns in a predefined time window and has 2 to 3 degrees of freedom.
Resumo:
Cue exposure therapy has been reported to be an effective intervention for reducing binge eating behavior in patients with eating disorders and obesity. However, in vivo food exposure conducted in the therapist's office presents logistical problems and lacks ecological validity. This study proposes the use of virtual reality technology as an alternative to in vivo exposure, and assesses the ability of different virtual environments to elicit anxiety and craving for food in a non-clinical sample. The results show that exposure to virtual environments provokes changes in reported craving for food. High-calorie food cues are the ones that elicit the highest increases in craving.
Resumo:
There is evidence that virtual reality (VR) pain distraction is effective at improving pain-related outcomes. However, more research is needed to investigate VR environments with other pain-related goals. The main aim of this study was to compare the differential effects of two VR environments on a set of pain-related and cognitive variables during a cold pressor experiment. One of these environments aimed to distract attention away from pain (VRD), whereas the other was designed to enhance pain control (VRC). Participants were 77 psychology students, who were randomly assigned to one of the following three conditions during the cold pressor experiment: (a) VRD, (b) VRC, or (c) Non-VR (control condition). Data were collected regarding both pain-related variables (intensity, tolerance, threshold, time perception, and pain sensitivity range) and cognitive variables (self-efficacy and catastrophizing). Results showed that in comparison with the control condition, the VRC intervention significantly increased pain tolerance, the pain sensitivity range, and the degree of time underestimation. It also increased self-efficacy in tolerating pain and led to a reduction in reported helplessness. The VRD intervention significantly increased the pain threshold and pain tolerance in comparison with the control condition, but it did not affect any of the cognitive variables. Overall, the intervention designed to enhance control seems to have a greater effect on the cognitive variables assessed. Although these results need to be replicated in further studies, the findings suggest that the VRC intervention has considerable potential in terms of increasing self-efficacy and modifying the negative thoughts that commonly accompany pain problems.
Resumo:
Entre los años 2005 y 2006, se realizaron en Madrid dos interesantes encuentros internacionales denominados Tecnologías para una Museografía Avanzada, promovidos por el Consejo Internacional de Museos (ICOM), donde representantes de diversas instituciones culturales explicaban las influencias enriquecedoras que han aportado a sus exposiciones los nuevos medios tecnológicos en conjunto con la didáctica y la Museografía Interactiva como elementos mediadores de discurso. Representantes y Directores de instituciones como el Museo de Historia de Valencia (MHV), el Museo Arqueológico Provincial de Alicante (MARQ) o el Museo de la Cultura Bizantina de Grecia por ejemplo, han presentado las propuestas que en este contexto les ha permitido comunicar ideas refrescantes y nuevas estrategias para la compresión de diversos tipos de patrimonios. La premisa expuesta por ellos enfatizaba el pensamiento de que las nuevas tecnologías aunadas a la Museografía Interactiva, constituyen un apoyo didáctico a la hora de transmitir significados provenientes de los objetos patrimoniales para desarrollar y ampliar la comprensión del visitante en relación a los contenidos de las exposiciones. A este respecto, llama la atención la ausencia de museos especializados en Arte ante este tipo de discursos innovadores que suelen provocar en los visitantes soluciones educativas in situ, otorgando nuevos enfoques de las cosas, de la historia, de los objetos y de las generaciones pasadas.
Resumo:
This paper presents the distributed environment for virtual and/or real experiments for underwater robots (DEVRE). This environment is composed of a set of processes running on a local area network composed of three sites: 1) the onboard AUV computer; 2) a surface computer used as human-machine interface (HMI); and 3) a computer used for simulating the vehicle dynamics and representing the virtual world. The HMI can be transparently linked to the real sensors and actuators dealing with a real mission. It can also be linked with virtual sensors and virtual actuators, dealing with a virtual mission. The aim of DEVRE is to assist engineers during the software development and testing in the lab prior to real experiments
Resumo:
La aparición de nuevos tipos de aplicaciones, como vídeo bajo demanda, realidad virtual y videoconferencias entre otras, caracterizadas por la necesidad de cumplir sus deadlines. Este tipo de aplicaciones, han sido denominadas en la literatura aplicaciones soft-real time (SRT) periódicas. Este trabajo se centra en el problema de la planificación temporal de este nuevo tipo de aplicaciones en clusters no dedicados.
Resumo:
Hem realitzat l’estudi de moviments humans i hem buscat la forma de poder crear aquests moviments en temps real sobre entorns digitals de forma que la feina que han de dur a terme els artistes i animadors sigui reduïda. Hem fet un estudi de les diferents tècniques d’animació de personatges que podem trobar actualment en l’industria de l’entreteniment així com les principals línies de recerca, estudiant detingudament la tècnica més utilitzada, la captura de moviments. La captura de moviments permet enregistrar els moviments d’una persona mitjançant sensors òptics, sensors magnètics i vídeo càmeres. Aquesta informació és emmagatzemada en arxius que després podran ser reproduïts per un personatge en temps real en una aplicació digital. Tot moviment enregistrat ha d’estar associat a un personatge, aquest és el procés de rigging, un dels punts que hem treballat ha estat la creació d’un sistema d’associació de l’esquelet amb la malla del personatge de forma semi-automàtica, reduint la feina de l’animador per a realitzar aquest procés. En les aplicacions en temps real com la realitat virtual, cada cop més s’està simulant l’entorn en el que viuen els personatges mitjançant les lleis de Newton, de forma que tot canvi en el moviment d’un cos ve donat per l’aplicació d’una força sobre aquest. La captura de moviments no escala bé amb aquests entorns degut a que no és capaç de crear noves animacions realistes a partir de l’enregistrada que depenguin de l’interacció amb l’entorn. L’objectiu final del nostre treball ha estat realitzar la creació d’animacions a partir de forces tal i com ho fem en la realitat en temps real. Per a això hem introduït un model muscular i un sistema de balanç sobre el personatge de forma que aquest pugui respondre a les interaccions amb l’entorn simulat mitjançant les lleis de Newton de manera realista.
Resumo:
L’objectiu d’aquest projecte és el desenvolupament d’una eina de generació de xarxes de carrers a partir d’exemples. L’eina ha de permetre generar una xarxa de carrers nova que sigui semblant a l’existent en un mapa vectorial donat. A més, també es pretén unir aquesta aplicació amb l’urbanEngine per tal de poder generar vistes en 3D sobre aquestes xarxes de carrers, a més d’ampliar les opcions de l’urbanEngine a l’hora de crear ciutats