987 resultados para REACTION-DIFFUSION PROBLEMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre-processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection-diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed discretization error by clustering the nodes in the computational mesh where the analytical solution undergoes rapid variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, integro-differential reaction-diffusion models are presented for the description of the temporal and spatial evolution of the concentrations of Abeta and tau proteins involved in Alzheimer's disease. Initially, a local model is analysed: this is obtained by coupling with an interaction term two heterodimer models, modified by adding diffusion and Holling functional terms of the second type. We then move on to the presentation of three nonlocal models, which differ according to the type of the growth (exponential, logistic or Gompertzian) considered for healthy proteins. In these models integral terms are introduced to consider the interaction between proteins that are located at different spatial points possibly far apart. For each of the models introduced, the determination of equilibrium points with their stability and a study of the clearance inequalities are carried out. In addition, since the integrals introduced imply a spatial nonlocality in the models exhibited, some general features of nonlocal models are presented. Afterwards, with the aim of developing simulations, it is decided to transfer the nonlocal models to a brain graph called connectome. Therefore, after setting out the construction of such a graph, we move on to the description of Laplacian and convolution operations on a graph. Taking advantage of all these elements, we finally move on to the translation of the continuous models described above into discrete models on the connectome. To conclude, the results of some simulations concerning the discrete models just derived are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction-diffusion problems, finite elements, unstructured grid, grid adaption, W-method, stiffness, local partitioning, excitable medium, spiral wave drift

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user-defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements. boundary locking is avoided and optimal-order convergence is achieved. This is shown through numerical experiments in reaction-diffusion problems. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we are interested in the dynamic behavior of a parabolic problem with nonlinear boundary conditions and delay in the boundary. We construct a reaction-diffusion problem with delay in the interior, where the reaction term is concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary, as a parameter epsilon goes to zero. We analyze the limit of the solutions of this concentrated problem and prove that these solutions converge in certain continuous function spaces to the unique solution of the parabolic problem with delay in the boundary. This convergence result allows us to approximate the solution of equations with delay acting on the boundary by solutions of equations with delay acting in the interior and it may contribute to analyze the dynamic behavior of delay equations when the delay is at the boundary. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical Subject Classification 2010:26A33, 33E99, 15A52, 62E15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper provides a review of A.M. Mathai's applications of the theory of special functions, particularly generalized hypergeometric functions, to problems in stellar physics and formation of structure in the Universe and to questions related to reaction, diffusion, and reaction-diffusion models. The essay also highlights Mathai's recent work on entropic, distributional, and differential pathways to basic concepts in statistical mechanics, making use of his earlier research results in information and statistical distribution theory. The results presented in the essay cover a period of time in Mathai's research from 1982 to 2008 and are all related to the thematic area of the gravitationally stabilized solar fusion reactor and fractional reaction-diffusion, taking into account concepts of non-extensive statistical mechanics. The time period referred to above coincides also with Mathai's exceptional contributions to the establishment and operation of the Centre for Mathematical Sciences, India, as well as the holding of the United Nations (UN)/European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) of the United States/ Japanese Aerospace Exploration Agency (JAXA) Workshops on basic space science and the International Heliophysical Year 2007, around the world. Professor Mathai's contributions to the latter, since 1991, are a testimony for his social con-science applied to international scientific activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study some properties of the monotone solutions of the boundary value problem (p(u'))' - cu' + f(u) = 0, u(-infinity) = 0, u(+infinity) = 1, where f is a continuous function, positive in (0, 1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of (0, 1) or (0, +infinity) onto [0, +infinity). This problem arises when we look for travelling waves for the reaction diffusion equation partial derivative u/partial derivative t = partial derivative/partial derivative x [p(partial derivative u/partial derivative x)] + f(u) with the parameter c representing the wave speed. A possible model for the nonlinear diffusion is the relativistic curvature operator p(nu)= nu/root 1-nu(2). The same ideas apply when P is given by the one- dimensional p- Laplacian P(v) = |v|(p-2)v. In this case, an advection term is also considered. We show that, as for the classical Fisher- Kolmogorov- Petrovski- Piskounov equations, there is an interval of admissible speeds c and we give characterisations of the critical speed c. We also present some examples of exact solutions. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.