Regularity and mass conservation for discrete coagulation-fragmentation equations with diffusion


Autoria(s): Cañizo, José A.; Desvillettes, L.; Fellner, K.
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/10/2009

Resumo

We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.

Formato

21

245346 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/46798

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;890

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Dualitat, Teoria de la (Matemàtica) #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint