55 resultados para Ozon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit untersucht die Struktur und Zusammensetzung der untersten Atmosphäre im Rahmen der PARADE-Messkampagne (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) am Kleinen Feldberg in Deutschland im Spätsommer 2011. Dazu werden Messungen von meteorologischen Grundgrößen (Temperatur, Feuchte, Druck, Windgeschwindigkeit und -richtung) zusammen mit Radiosonden und flugzeuggetragenen Messungen von Spurengasen (Kohlenstoffmonoxid, -dioxid, Ozon und Partikelanzahlkonzentrationen) ausgewertet. Ziel ist es, mit diesen Daten, die thermodynamischen und dynamischen Eigenschaften und deren Einfluss auf die chemische Luftmassenzusammensetzung in der planetaren Grenzschicht zu bestimmen. Dazu werden die Radiosonden und Flugzeugmessungen mit Lagrangeschen Methoden kombiniert und es wird zwischen rein kinematischen Modellen (LAGRANTO und FLEXTRA) sowie sogenannten Partikeldispersionsmodellen (FLEXPART) unterschieden. Zum ersten Mal wurde im Rahmen dieser Arbeit dabei auch eine Version von FLEXPART-COSMO verwendet, die von den meteorologischen Analysefeldern des Deutschen Wetterdienstes angetrieben werden. Aus verschiedenen bekannten Methoden der Grenzschichthöhenbestimmung mit Radiosondenmessungen wird die Bulk-Richardson-Zahl-Methode als Referenzmethode verwendet, da sie eine etablierte Methode sowohl für Messungen und als auch Modellanalysen darstellt. Mit einer Toleranz von 125 m, kann zu 95 % mit mindestens drei anderen Methoden eine Übereinstimmung zu der ermittelten Grenzschichthöhe festgestellt werden, was die Qualität der Grenzschichthöhe bestätigt. Die Grenzschichthöhe variiert während der Messkampagne zwischen 0 und 2000 m über Grund, wobei eine hohe Grenzschicht nach dem Durchzug von Kaltfronten beobachtet wird, hingegen eine niedrige Grenzschicht unter Hochdruckeinfluss und damit verbundener Subsidenz bei windarmen Bedingungen im Warmsektor. Ein Vergleich zwischen den Grenzschichthöhen aus Radiosonden und aus Modellen (COSMO-DE, COSMO-EU, COSMO-7) zeigt nur geringe Unterschiede um -6 bis +12% während der Kampagne am Kleinen Feldberg. Es kann allerdings gezeigt werden, dass in größeren Simulationsgebieten systematische Unterschiede zwischen den Modellen (COSMO-7 und COSMO-EU) auftreten. Im Rahmen dieser Arbeit wird deutlich, dass die Bodenfeuchte, die in diesen beiden Modellen unterschiedlich initialisiert wird, zu verschiedenen Grenzschichthöhen führt. Die Folge sind systematische Unterschiede in der Luftmassenherkunft und insbesondere der Emissionssensitivität. Des Weiteren kann lokale Mischung zwischen der Grenzschicht und der freien Troposphäre bestimmt werden. Dies zeigt sich in der zeitlichen Änderung der Korrelationen zwischen CO2 und O3 aus den Flugzeugmessungen, und wird im Vergleich mit Rückwärtstrajektorien und Radiosondenprofilen bestärkt. Das Einmischen der Luftmassen in die Grenzschicht beeinflusst dabei die chemische Zusammensetzung in der Vertikalen und wahrscheinlich auch am Boden. Diese experimentelle Studie bestätigt die Relevanz der Einmischungsprozesse aus der freien Troposphäre und die Verwendbarkeit der Korrelationsmethode, um Austausch- und Einmischungsprozesse an dieser Grenzfläche zu bestimmen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die obere Troposphäre / untere Stratosphäre (UTLS: Upper Troposphere / Lower Stratosphere)ist die Übergangsgregion zwischen den dynamisch, chemisch und mikrophysikalisch sehr verschiedenen untersten Atmosphärenschichten, der Troposphäre und der Stratosphäre. Strahlungsaktive Spurengase, wie zum Beispiel Wasserdampf (H2O), Ozon (O3) oder Kohlenstoffdioxid (CO2), und Wolken in der UTLS beeinflussen das Strahlungsbudget der Atmosphäre und das globale Klima. Mögliche Veränderungen in den Verteilungen und Konzentrationen dieser Spurengase modifizieren den Strahlungsantrieb der Atmosphäre und können zum beobachteten Klimawandel beitragen. Ziel dieser Arbeit ist es, Austausch- und Mischungsprozesse innerhalb der UTLS besser zu verstehen und damit Veränderungen der Spurengaszusammensetzung dieser Region genauer prognostizieren zu können. Grundlage hierfür bilden flugzeuggetragene in-situ Spurengasmessungen in der UTLS, welche während der Flugzeugmesskampagnen TACTS / ESMVal 2012 und AIRTOSS - ICE 2013 durchgeführt wurden. Hierbei wurde bei den Messungen von AIRTOSS - ICE 2013 das im Rahmen dieser Arbeit aufgebaute UMAQS (University of Mainz Airborne QCLbased Spectrometer) - Instrument zur Messung der troposphärischen Spurengase Distickstoffmonoxid (N2O) und Kohlenstoffmonoxid (CO) eingesetzt. Dieses erreicht bei einer zeitlichen Auflösung von 1 s eine Messunsicherheit von 0,39 ppbv und 1,39 ppbv der N2O bzw. CO-Mischungsverhältnisse. Die hohe Zeitauflösung und Messgenauigkeit der N2O- und CO- Daten erlaubt die Untersuchung von kleinskaligen Austauschprozessen zwischen Troposphäre und Stratosphäre im Bereich der Tropopause auf räumlichen Skalen kleiner 200 m. Anhand der N2O-Daten von AIRTOSS - ICE 2013 können in-situ detektierte Zirruspartikel in eisübersättigter Luft oberhalb der N2O-basierten chemischen Tropopause nachgewiesen werden. Mit Hilfe der N2O-CO-Korrelation sowie der Analyse von ECMWF-Modelldaten und der Berechnung von Rückwärtstrajektorien kann deren Existenz auf das irreversible Vermischen von troposphärischen und stratosphärischen Luftmassen zurückgeführt werden. Mit den in-situ Messungen von N2O, CO und CH4 (Methan) von TACTS und ESMVal 2012 werden die großräumigen Spurengasverteilungen bis zu einer potentiellen Temperatur von Theta = 410 K in der extratropischen Stratosphäre untersucht. Hierbei kann eine Verjüngung der Luftmassen in der extratropischen Stratosphäre mit Delta Theta > 30 K (relativ zur dynamischen Tropopause) über den Zeitraum der Messkampagne (28.08.2012 - 27.09.2012) nachgewiesen werden. Die Korrelation von N2O mit O3 zeigt, dass diese Verjüngung aufgrund des verstärkten Eintrages von Luftmassen aus der tropischen unteren Stratosphäre verursacht wird. Diese werden über den flachen Zweig der Brewer-Dobson-Zirkulation auf Zeitskalen von wenigen Wochen in die extratropische Stratosphäre transportiert. Anhandrnder Analyse der CO-O3-Korrelation eines Messfluges vom 30.08.2012 wird das irreversible Einmischen von Luftmassen aus der tropischen Stratosphäre in die Extratropen auf Isentropen mit Theta > 380 K identifiziert. Rückwärtstrajektorien zeigen, dass der Ursprung der eingemischten tropischen Luftmassen im Bereich der sommerlichen Antizyklone des asiatischen Monsuns liegt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Hydroxyl Radikal ist, auf globalem Maßstab, das bedeutendste Oxidant in der Atmosphäre. Es initiiert den Abbauprozess vieler, teilweise schädlicher, Spurengase und insbesondere den von flüchtigen Kohlenwasserstoffen (VOC). Die OH Konzentration ist somit ein gutes Maß für die augenblickliche Selbstreinigungskapazität der Atmosphäre. Messungen zu nächtlicher Zeit mit LIF-FAGE-Instrumenten (engl.: laser-induced fluorescence - fluorescence assay by gas expansion) haben Konzentrationen des Hydroxylradikals (OH) ergeben, die signifikant höher waren, als sich mit der bekannten Chemie erklären ließ. Um herauszufinden, ob ein solches Signal wirklich atmosphärisches OH ist oder von einer störenden Spezies stammt, die im Messinstrument OH produziert, wurde das LIF-FAGE-Instrument des Max-Planck-Instituts für Chemie (MPIC) im Rahmen dieser Doktorarbeit modifiziert und getestet. Dazu wurde ein so genannter Inlet Pre-Injector (IPI) entwickelt, mit dem in regelmäßigen Abständen ein OH-Fänger in die Umgebungsluft abgegeben werden kann, bevor das OH vom Instrument erfasst wird. Mit dieser Technik ist es möglich, ein Hintergrund-OH (OHbg), d. h. ein im Instrument erzeugtes OH-Signal, vom gemessenen OH-Gesamtsignal (OHtot) zu trennen. Die Differenz zwischen OHtot und OHbg ist die atmosphärische OH-Konzentration (OHatm). Vergleichsmessungen mit der hier entwickelten Technik, dem IPI, in zwei verschiedenen Umgebungen mit Instrumenten basierend auf Massenspektrometrie mit chemischer Ionisation (CIMS, engl.: chemical ionization mass spectrometry) als alternativer Methode des OH-Nachweises, zeigten eine weitgehende Übereinstimmung. Eine umfassende Beschreibung des Systems zur Ermittlung der Ursache des OHbg hat ergeben, dass es weder von einem Artefakt des Instruments noch von hinlänglich bekannten und beschriebenen LIF-FAGE-Interferenzen stammt. Zur Bestimmung der Spezies, die das OHbg-Signal verursacht, wurden verschiedene Laborstudien durchgeführt. Die Arbeit im Rahmen dieser Doktorarbeit hat ergeben, dass das LIF-FAGE-Instrument leicht auf OH reagiert, das beim monomolekularen Zerfall stabilisierter Criegee-Intermediate (SCI) im Niederdruckbereich des Instruments gebildet wird. Criegee-Intermediate oder Carbonyloxide entstehen bei der Ozonolyse ungesättigter flüchtiger Kohlenwasserstoffverbindungen (VOC, engl.: volatile organic compounds) und können daher in der Umgebungsluft vorkommen. Anhand von Tests mit verschiedenen Verweilzeiten der SCI im Niederdruckbereich des Instruments in Verbindung mit einem detaillierten Modell mit der neuesten SCI-Chemie wurde die monomolekulare Zerfallsgeschwindigkeit von 20  10 s-1 für den syn-Acetaldehyd-Oxykonformer bestimmt. Der in Feldkampagnen gemessene OHbg-Wert wurde dahingehend untersucht, ob SCI die Quelle des beobachteten Hintergrund-OH im Feld sein könnten. Das Budget für die SCI-Konzentration, das für die Kampagnen HUMPPA-COPEC 2010 und HOPE 2012 berechnet wurde, ergab eine SCI-Konzentration zwischen ca. 103 und 106 Molekülen pro cm3. In der Kampagne HUMPPA-COPEC 2010 ergab die Schwefelsäurekonzentration, dass die OH-Oxidation von SO2 allein die gemessene H2SO4-Konzentration nicht erklären konnte. In dieser Arbeit konnte gezeigt werden, dass das Hintergrund-OH mit dieser ungeklärten Produktionsrate von H2SO4 korreliert und somit die Oxidation von SO2 durch SCI als mögliche Erklärung in Frage kommt. Ferner korreliert das Hintergrund-OH in der Kampagne HOPE 2012 mit dem Produkt aus Ozon und VOC und konnte mit SO2 als SCI Fänger entfernt werden. Qualitativ zeigen wir somit, dass das in der Umgebungsluft gemessene Hintergrund-OH wahrscheinlich durch den monomolekularen Zerfall von SCI verursacht wird, doch sind weitere Studien notwendig, um die quantitativen Beziehung für diese Spezies und dem Hintergrund-OH in unserem Instrument zu bestimmen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Für das Vermögen der Atmosphäre sich selbst zu reinigen spielen Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2) eine bedeutende Rolle. Diese Spurengase bestimmen die photochemische Produktion von Ozon (O3) und beeinflussen das Vorkommen von Hydroxyl- (OH) und Nitrat-Radikalen (NO3). Wenn tagsüber ausreichend Solarstrahlung und Ozon vorherrschen, stehen NO und NO2 in einem schnellen photochemischen Gleichgewicht, dem „Photostationären Gleichgewichtszustand“ (engl.: photostationary state). Die Summe von NO und NO2 wird deshalb als NOx zusammengefasst. Vorhergehende Studien zum photostationären Gleichgewichtszustand von NOx umfassen Messungen an unterschiedlichsten Orten, angefangen bei Städten (geprägt von starken Luftverschmutzungen), bis hin zu abgeschiedenen Regionen (geprägt von geringeren Luftverschmutzungen). Während der photochemische Kreislauf von NO und NO2 unter Bedingungen erhöhter NOx-Konzentrationen grundlegend verstanden ist, gibt es in ländlicheren und entlegenen Regionen, welche geprägt sind von niedrigeren NOx-Konzetrationen, signifikante Lücken im Verständnis der zugrundeliegenden Zyklierungsprozesse. Diese Lücken könnten durch messtechnische NO2-Interferenzen bedingt sein - insbesondere bei indirekten Nachweismethoden, welche von Artefakten beeinflusst sein können. Bei sehr niedrigen NOx-Konzentrationen und wenn messtechnische NO2-Interferenzen ausgeschlossen werden können, wird häufig geschlussfolgert, dass diese Verständnislücken mit der Existenz eines „unbekannten Oxidationsmittels“ (engl.: unknown oxidant) verknüpft ist. Im Rahmen dieser Arbeit wird der photostationäre Gleichgewichtszustand von NOx analysiert, mit dem Ziel die potenzielle Existenz bislang unbekannter Prozesse zu untersuchen. Ein Gasanalysator für die direkte Messung von atmosphärischem NO¬2 mittels laserinduzierter Fluoreszenzmesstechnik (engl. LIF – laser induced fluorescence), GANDALF, wurde neu entwickelt und während der Messkampagne PARADE 2011 erstmals für Feldmessungen eingesetzt. Die Messungen im Rahmen von PARADE wurden im Sommer 2011 in einem ländlich geprägten Gebiet in Deutschland durchgeführt. Umfangreiche NO2-Messungen unter Verwendung unterschiedlicher Messtechniken (DOAS, CLD und CRD) ermöglichten einen ausführlichen und erfolgreichen Vergleich von GANDALF mit den übrigen NO2-Messtechniken. Weitere relevante Spurengase und meteorologische Parameter wurden gemessen, um den photostationären Zustand von NOx, basierend auf den NO2-Messungen mit GANDALF in dieser Umgebung zu untersuchen. Während PARADE wurden moderate NOx Mischungsverhältnisse an der Messstelle beobachtet (10^2 - 10^4 pptv). Mischungsverhältnisse biogener flüchtige Kohlenwasserstoffverbindungen (BVOC, engl.: biogenic volatile organic compounds) aus dem umgebenden Wald (hauptsächlich Nadelwald) lagen in der Größenordnung 10^2 pptv vor. Die Charakteristiken des photostationären Gleichgewichtszustandes von NOx bei niedrigen NOx-Mischungsverhältnissen (10 - 10^3 pptv) wurde für eine weitere Messstelle in einem borealen Waldgebiet während der Messkampagne HUMPPA-COPEC 2010 untersucht. HUMPPA–COPEC–2010 wurde im Sommer 2010 in der SMEARII-Station in Hyytiälä, Süd-Finnland, durchgeführt. Die charakteristischen Eigenschaften des photostationären Gleichgewichtszustandes von NOx in den beiden Waldgebieten werden in dieser Arbeit verglichen. Des Weiteren ermöglicht der umfangreiche Datensatz - dieser beinhaltet Messungen von relevanten Spurengasen für die Radikalchemie (OH, HO2), sowie der totalen OH-Reaktivität – das aktuelle Verständnis bezüglich der NOx-Photochemie unter Verwendung von einem Boxmodell, in welches die gemessenen Daten als Randbedingungen eingehen, zu überprüfen und zu verbessern. Während NOx-Konzentrationen in HUMPPA-COPEC 2010 niedriger sind, im Vergleich zu PARADE 2011 und BVOC-Konzentrationen höher, sind die Zyklierungsprozesse von NO und NO2 in beiden Fällen grundlegend verstanden. Die Analyse des photostationären Gleichgewichtszustandes von NOx für die beiden stark unterschiedlichen Messstandorte zeigt auf, dass potenziell unbekannte Prozesse in keinem der beiden Fälle vorhanden sind. Die aktuelle Darstellung der NOx-Chemie wurde für HUMPPA-COPEC 2010 unter Verwendung des chemischen Mechanismus MIM3* simuliert. Die Ergebnisse der Simulation sind konsistent mit den Berechnungen basierend auf dem photostationären Gleichgewichtszustand von NOx.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ozon (O3) ist ein wichtiges Oxidierungs- und Treibhausgas in der Erdatmosphäre. Es hat Einfluss auf das Klima, die Luftqualität sowie auf die menschliche Gesundheit und die Vegetation. Ökosysteme, wie beispielsweise Wälder, sind Senken für troposphärisches Ozon und werden in Zukunft, bedingt durch Stürme, Pflanzenschädlinge und Änderungen in der Landnutzung, heterogener sein. Es ist anzunehmen, dass diese Heterogenitäten die Aufnahme von Treibhausgasen verringern und signifikante Rückkopplungen auf das Klimasystem bewirken werden. Beeinflusst wird der Atmosphären-Biosphären-Austausch von Ozon durch stomatäre Aufnahme, Deposition auf Pflanzenoberflächen und Böden sowie chemische Umwandlungen. Diese Prozesse zu verstehen und den Ozonaustausch für verschiedene Ökosysteme zu quantifizieren sind Voraussetzungen, um von lokalen Messungen auf regionale Ozonflüsse zu schließen.rnFür die Messung von vertikalen turbulenten Ozonflüssen wird die Eddy Kovarianz Methode genutzt. Die Verwendung von Eddy Kovarianz Systemen mit geschlossenem Pfad, basierend auf schnellen Chemilumineszenz-Ozonsensoren, kann zu Fehlern in der Flussmessung führen. Ein direkter Vergleich von nebeneinander angebrachten Ozonsensoren ermöglichte es einen Einblick in die Faktoren zu erhalten, die die Genauigkeit der Messungen beeinflussen. Systematische Unterschiede zwischen einzelnen Sensoren und der Einfluss von unterschiedlichen Längen des Einlassschlauches wurden untersucht, indem Frequenzspektren analysiert und Korrekturfaktoren für die Ozonflüsse bestimmt wurden. Die experimentell bestimmten Korrekturfaktoren zeigten keinen signifikanten Unterschied zu Korrekturfaktoren, die mithilfe von theoretischen Transferfunktionen bestimmt wurden, wodurch die Anwendbarkeit der theoretisch ermittelten Faktoren zur Korrektur von Ozonflüssen bestätigt wurde.rnIm Sommer 2011 wurden im Rahmen des EGER (ExchanGE processes in mountainous Regions) Projektes Messungen durchgeführt, um zu einem besseren Verständnis des Atmosphären-Biosphären Ozonaustauschs in gestörten Ökosystemen beizutragen. Ozonflüsse wurden auf beiden Seiten einer Waldkante gemessen, die einen Fichtenwald und einen Windwurf trennt. Auf der straßenähnlichen Freifläche, die durch den Sturm "Kyrill" (2007) entstand, entwickelte sich eine Sekundärvegetation, die sich in ihrer Phänologie und Blattphysiologie vom ursprünglich vorherrschenden Fichtenwald unterschied. Der mittlere nächtliche Fluss über dem Fichtenwald war -6 bis -7 nmol m2 s-1 und nahm auf -13 nmol m2 s-1 um die Mittagszeit ab. Die Ozonflüsse zeigten eine deutliche Beziehung zur Pflanzenverdunstung und CO2 Aufnahme, was darauf hinwies, dass während des Tages der Großteil des Ozons von den Pflanzenstomata aufgenommen wurde. Die relativ hohe nächtliche Deposition wurde durch nicht-stomatäre Prozesse verursacht. Die Deposition über dem Wald war im gesamten Tagesverlauf in etwa doppelt so hoch wie über der Freifläche. Dieses Verhältnis stimmte mit dem Verhältnis des Pflanzenflächenindex (PAI) überein. Die Störung des Ökosystems verringerte somit die Fähigkeit des Bewuchses, als Senke für troposphärisches Ozon zu fungieren. Der deutliche Unterschied der Ozonflüsse der beiden Bewuchsarten verdeutlichte die Herausforderung bei der Regionalisierung von Ozonflüssen in heterogen bewaldeten Gebieten.rnDie gemessenen Flüsse wurden darüber hinaus mit Simulationen verglichen, die mit dem Chemiemodell MLC-CHEM durchgeführt wurden. Um das Modell bezüglich der Berechnung von Ozonflüssen zu evaluieren, wurden gemessene und modellierte Flüsse von zwei Positionen im EGER-Gebiet verwendet. Obwohl die Größenordnung der Flüsse übereinstimmte, zeigten die Ergebnisse eine signifikante Differenz zwischen gemessenen und modellierten Flüssen. Zudem gab es eine klare Abhängigkeit der Differenz von der relativen Feuchte, mit abnehmender Differenz bei zunehmender Feuchte, was zeigte, dass das Modell vor einer Verwendung für umfangreiche Studien des Ozonflusses weiterer Verbesserungen bedarf.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Erdatmosphäre besteht hauptsächlich aus Stickstoff (78%), Sauerstoff (21%) und Edelga¬sen. Obwohl Partikel weniger als 0,1% ausmachen, spielen sie eine entscheidende Rolle in der Chemie und Physik der Atmosphäre, da sie das Klima der Erde sowohl direkt als auch indirekt beeinflussen. Je nach Art der Bildung unterscheidet man zwischen primären und sekundären Partikeln, wobei primäre Partikel direkt in die Atmosphäre eingetragen werden. Sekundäre Partikel hingegen entstehen durch Kondensation von schwerflüchtigen Verbindungen aus der Gasphase, welche durch Reaktionen von gasförmigen Vorläufersubstanzen (volatile organic compounds, VOCs) mit atmosphärischen Oxidantien wie Ozon oder OH-Radikalen gebildet werden. Da die meisten Vorläufersubstanzen organischer Natur sind, wird das daraus gebil¬dete Aerosol als sekundäres organisches Aerosol (SOA) bezeichnet. Anders als die meisten primären Partikel stammen die VOCs überwiegend aus biogenen Quellen. Es handelt sich da¬bei um ungesättigte Kohlenwasserstoffe, die bei intensiver Sonneneinstrahlung und hohen Temperaturen von Pflanzen emittiert werden. Viele der leichtflüchtigen Vorläufersubstanzen sind chiral, sowohl die Vorläufer als auch die daraus gebildeten Partikel werden aber in den meisten Studien als eine Verbindung betrachtet und gemeinsam analysiert. Die mit Modellen berechneten SOA-Konzentrationen, welche auf dieser traditionellen Vorstellung der SOA-Bil¬dung beruhen, liegen deutlich unterhalb der in der Atmosphäre gefundenen, so dass neben diesem Bildungsweg auch noch andere SOA-Bildungsarten existieren müssen. Aus diesem Grund wird der Fokus der heutigen Forschung vermehrt auf die heterogene Chemie in der Partikelphase gerichtet. Glyoxal als Modellsubstanz kommt hierbei eine wichtige Rolle zu. Es handelt sich bei dieser Verbindung um ein Molekül mit einem hohen Dampfdruck, das auf Grund dieser Eigenschaft nur in der Gasphase zu finden sein sollte. Da es aber über zwei Alde¬hydgruppen verfügt, ist es sehr gut wasserlöslich und kann dadurch in die Partikelphase über¬gehen, wo es heterogenen chemischen Prozessen unterliegt. Unter anderem werden in An¬wesenheit von Ammoniumionen Imidazole gebildet, welche wegen der beiden Stickstoff-He¬teroatome lichtabsorbierende Eigenschaften besitzen. Die Verteilung von Glyoxal zwischen der Gas- und der Partikelphase wird durch das Henrysche Gesetz beschrieben, wobei die Gleichgewichtskonstante die sogenannte Henry-Konstante ist. Diese ist abhängig von der un¬tersuchten organischen Verbindung und den im Partikel vorhandenen anorganischen Salzen. Für die Untersuchung chiraler Verbindungen im SOA wurde zunächst eine Filterextraktions¬methode entwickelt und die erhaltenen Proben anschließend mittels chiraler Hochleistungs-Flüssigchromatographie, welche an ein Elektrospray-Massenspektrometer gekoppelt war, analysiert. Der Fokus lag hierbei auf dem am häufigsten emittierten Monoterpen α-Pinen und seinem Hauptprodukt, der Pinsäure. Da bei der Ozonolyse des α-Pinens das cyclische Grund¬gerüst erhalten bleibt, können trotz der beiden im Molekül vorhanden chiralen Zentren nur zwei Pinsäure Enantiomere gebildet werden. Als Extraktionsmittel wurde eine Mischung aus Methanol/Wasser 9/1 gewählt, mit welcher Extraktionseffizienzen von 65% für Pinsäure Enan¬tiomer 1 und 68% für Pinsäure Enantiomer 2 erreicht werden konnten. Des Weiteren wurden Experimente in einer Atmosphärensimulationskammer durchgeführt, um die Produkte der α-Pinen Ozonolyse eindeutig zu charakterisieren. Enantiomer 1 wurde demnach aus (+)-α-Pinen gebildet und Enantiomer 2 entstand aus (-)-α-Pinen. Auf Filterproben aus dem brasilianischen Regenwald konnte ausschließlich Pinsäure Enantiomer 2 gefunden werden. Enantiomer 1 lag dauerhaft unterhalb der Nachweisgrenze von 18,27 ng/mL. Im borealen Nadelwald war das Verhältnis umgekehrt und Pinsäure Enantiomer 1 überwog vor Pinsäure Enantiomer 2. Das Verhältnis betrug 56% Enantiomer 1 zu 44% Enantiomer 2. Saisonale Verläufe im tropischen Regenwald zeigten, dass die Konzentrationen zur Trockenzeit im August höher waren als wäh¬rend der Regenzeit im Februar. Auch im borealen Nadelwald wurden im Sommer höhere Kon¬zentrationen gemessen als im Winter. Die Verhältnisse der Enantiomere änderten sich nicht im jahreszeitlichen Verlauf. Die Bestimmung der Henry-Konstanten von Glyoxal bei verschiedenen Saataerosolen, nämlich Ammoniumsulfat, Natriumnitrat, Kaliumsulfat, Natriumchlorid und Ammoniumnitrat sowie die irreversible Produktbildung aus Glyoxal in Anwesenheit von Ammoniak waren Forschungs¬gegenstand einer Atmosphärensimulationskammer-Kampagne am Paul-Scherrer-Institut in Villigen, Schweiz. Hierzu wurde zunächst das zu untersuchende Saataerosol in der Kammer vorgelegt und dann aus photochemisch erzeugten OH-Radikalen und Acetylen Glyoxal er¬zeugt. Für die Bestimmung der Glyoxalkonzentration im Kammeraerosol wurde zunächst eine beste¬hende Filterextraktionsmethode modifiziert und die Analyse mittels hochauflösender Mas¬senspektrometrie realisiert. Als Extraktionsmittel kam 100% Acetonitril, ACN zum Einsatz wo¬bei die Extraktionseffizienz bei 85% lag. Für die anschließende Derivatisierung wurde 2,4-Di¬nitrophenylhydrazin, DNPH verwendet. Dieses musste zuvor drei Mal mittels Festphasenex¬traktion gereinigt werden um störende Blindwerte ausreichend zu minimieren. Die gefunde¬nen Henry-Konstanten für Ammoniumsulfat als Saataerosol stimmten gut mit in der Literatur gefundenen Werten überein. Die Werte für Natriumnitrat und Natriumchlorid als Saataerosol waren kleiner als die von Ammoniumsulfat aber größer als der Wert von reinem Wasser. Für Ammoniumnitrat und Kaliumsulfat konnten keine Konstanten berechnet werden. Alle drei Saataerosole führten zu einem „Salting-in“. Das bedeutet, dass bei Erhöhung der Salzmolalität auch die Glyoxalkonzentration im Partikel stieg. Diese Beobachtungen sind auch in der Litera¬tur beschrieben, wobei die Ergebnisse dort nicht auf der Durchführung von Kammerexperi¬menten beruhen, sondern mittels bulk-Experimenten generiert wurden. Für die Trennung der Imidazole wurde eine neue Filterextraktionsmethode entwickelt, wobei sich ein Gemisch aus mit HCl angesäuertem ACN/H2O im Verhältnis 9/1 als optimales Extrak¬tionsmittel herausstellte. Drei verschiedenen Imidazole konnten mit dieser Methode quanti¬fiziert werden, nämlich 1-H-Imidazol-4-carbaldehyd (IC), Imidazol (IM) und 2,2‘-Biimidazol (BI). Die Effizienzen lagen für BI bei 95%, für IC bei 58% und für IM bei 75%. Kammerexperimente unter Zugabe von Ammoniak zeigten höhere Imidazolkonzentrationen als solche ohne. Wurden die Experimente ohne Ammoniak in Anwesenheit von Ammoni¬umsulfat durchgeführt, wurden höhere Imidazol-Konzentrationen gefunden als ohne Ammo¬niumionen. Auch die relative Luftfeuchtigkeit spielte eine wichtige Rolle, da sowohl eine zu hohe als auch eine zu niedrige relative Luftfeuchtigkeit zu einer verminderten Imidazolbildung führte. Durch mit 13C-markiertem Kohlenstoff durchgeführte Experimente konnte eindeutig gezeigt werden, dass es sich bei den gebildeten Imidazolen und Glyoxalprodukte handelte. Außerdem konnte der in der Literatur beschriebene Bildungsmechanismus erfolgreich weiter¬entwickelt werden. Während der CYPHEX Kampagne in Zypern konnten erstmalig Imidazole in Feldproben nach¬gewiesen werden. Das Hauptprodukt IC zeigte einen tageszeitlichen Verlauf mit höheren Kon¬zentrationen während der Nacht und korrelierte signifikant aber schwach mit der Acidität und Ammoniumionenkonzentration des gefundenen Aerosols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der atmosphärische Kreislauf reaktiver Stickstoffverbindungen beschäftigt sowohl die Naturwissenschaftler als auch die Politik. Dies ist insbesondere darauf zurückzuführen, dass reaktive Stickoxide die Bildung von bodennahem Ozon kontrollieren. Reaktive Stickstoffverbindungen spielen darüber hinaus als gasförmige Vorläufer von Feinstaubpartikeln eine wichtige Rolle und der Transport von reaktivem Stickstoff über lange Distanzen verändert den biogeochemischen Kohlenstoffkreislauf des Planeten, indem er entlegene Ökosysteme mit Stickstoff düngt. Die Messungen von stabilen Stickstoffisotopenverhältnissen (15N/14N) bietet ein Hilfsmittel, welches es erlaubt, die Quellen von reaktiven Stickstoffverbindungen zu identifizieren und die am Stickstoffkeislauf beteiligten Reaktionen mithilfe ihrer reaktionsspezifischen Isotopenfraktionierung genauer zu untersuchen. rnIn dieser Doktorarbeit demonstriere ich, dass es möglich ist, mit Hilfe von Nano-Sekundärionenmassenspektrometrie (NanoSIMS) verschiedene stickstoffhaltige Verbindungen, die üblicherweise in atmosphärischen Feinstaubpartikeln vorkommen, mit einer räumlichen Auflösung von weniger als einem Mikrometer zu analysieren und zu identifizieren. Die Unterscheidung verschiedener stickstoffhaltiger Verbindungen erfolgt anhand der relativen Signalintensitäten der positiven und negativen Sekundärionensignale, die beobachtet werden, wenn die Feinstaubproben mit einem Cs+ oder O- Primärionenstrahl beschossen werden. Die Feinstaubproben können direkt auf dem Probenahmesubstrat in das Massenspektrometer eingeführt werden, ohne chemisch oder physikalisch aufbereited zu werden. Die Methode wurde Mithilfe von Nitrat, Nitrit, Ammoniumsulfat, Harnstoff, Aminosären, biologischen Feinstaubproben (Pilzsporen) und Imidazol getestet. Ich habe gezeigt, dass NO2 Sekundärionen nur beim Beschuss von Nitrat und Nitrit (Salzen) mit positiven Primärionen entstehen, während NH4+ Sekundärionen nur beim Beschuss von Aminosäuren, Harnstoff und Ammoniumsalzen mit positiven Primärionen freigesetzt werden, nicht aber beim Beschuss biologischer Proben wie z.B. Pilzsporen. CN- Sekundärionen werden beim Beschuss aller stickstoffhaltigen Verbindungen mit positiven Primärionen beobachtet, da fast alle Proben oberflächennah mit Kohlenstoffspuren kontaminiert sind. Die relative Signalintensität der CN- Sekundärionen ist bei kohlenstoffhaltigen organischen Stickstoffverbindungen am höchsten.rnDarüber hinaus habe ich gezeigt, dass an reinen Nitratsalzproben (NaNO3 und KNO3), welche auf Goldfolien aufgebracht wurden speziesspezifische stabile Stickstoffisotopenverhältnisse mithilfe des 15N16O2- / 14N16O2- - Sekundärionenverhältnisses genau und richtig gemessen werden können. Die Messgenauigkeit auf Feldern mit einer Rastergröße von 5×5 µm2 wurde anhand von Langzeitmessungen an einem hausinternen NaNO3 Standard als ± 0.6 ‰ bestimmt. Die Differenz der matrixspezifischen instrumentellen Massenfraktionierung zwischen NaNO3 und KNO3 betrug 7.1 ± 0.9 ‰. 23Na12C2- Sekundärionen können eine ernst zu nehmende Interferenz darstellen wenn 15N16O2- Sekundärionen zur Messung des nitratspezifischen schweren Stickstoffs eingesetzt werden sollen und Natrium und Kohlenstoff im selben Feinstaubpartikel als interne Mischung vorliegt oder die natriumhaltige Probe auf einem kohlenstoffhaltigen Substrat abgelegt wurde. Selbst wenn, wie im Fall von KNO3, keine derartige Interferenz vorliegt, führt eine interne Mischung mit Kohlenstoff im selben Feinstaubpartikel zu einer matrixspezifischen instrumentellen Massenfraktionierung die mit der folgenden Gleichung beschrieben werden kann: 15Nbias = (101 ± 4) ∙ f − (101 ± 3) ‰, mit f = 14N16O2- / (14N16O2- + 12C14N-). rnWird das 12C15N- / 12C14N- Sekundärionenverhältnis zur Messung der stabilen Stickstoffisotopenzusammensetzung verwendet, beeinflusst die Probematrix die Messungsergebnisse nicht, auch wenn Stickstoff und Kohlenstoff in den Feinstaubpartikeln in variablen N/C–Verhältnissen vorliegen. Auch Interferenzen spielen keine Rolle. Um sicherzustellen, dass die Messung weiterhin spezifisch auf Nitratspezies eingeschränkt bleibt, kann eine 14N16O2- Maske bei der Datenauswertung verwendet werden. Werden die Proben auf einem kohlenstoffhaltigen, stickstofffreien Probennahmesubstrat gesammelt, erhöht dies die Signalintensität für reine Nitrat-Feinstaubpartikel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34cdc2 could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34cdc2, and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor–induced feedback. We report here that the cdk inhibitor p21cip1, when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21cip1, progesterone fails to induce the activation of MAPK or p34cdc2, and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.