172 resultados para Monolith


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Confirmation of quantum dot lasing have been given by photoluminescence and electro-luminescence spectra. Energy levels of QD laser are distinctively resolved due to band filling effect, and the lasing energy of quantum dot laser is much lower than quantum well laser. The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally by deep level transient spectroscopy (DLTS). Such barrier has been predicted by previous theories and can be explained by the apexes appeared in the interface between InAs and GaAs caused by strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lectin affinity chromatography was miniaturized into a microfluidic format, which results in improvement of performance, as compared to the conventional method. A lectin affinity monolith column was prepared in the microchannel of a microfluidic chip. The porous monolith was fabricated by UV-initiated polymerization of ethylene dimethacrylate (EDMA) and glycidyl methacrylate (GMA) in the presence of porogeneities, followed by immobilization of pisum sativum agglutinin (PSA) on the monolith matrix. Using electroosmosis as the driven force, lectin affinity chromatographies of three kinds of glycoprotein, turkey ovalbumin (TO), chicken ovalbumin (CO), and ovomucoid (OM), were carried out on the microfluidic system. All the glycoproteins were successfully separated into several fractions with different affinities toward the immobilized PSA. The integrated system reduces the time required for the lectin affinity chromatography reaction to similar to3%, thus, the overall analysis time from 4 h to 400 s. Only 300 pg of glycoprotein is required for the whole separation process. Moreover, troublesome operations for lectin affinity chromatography are simplified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) were used to synthesize a monolithic capillary column containing reactive epoxy groups. Glutaraldehyde was introduced and linked to the monolith after a process of amination. An aqueous solution of commercial carrier ampholytes (CAs, Ampholine) was focused in such a polymer column. The primary amino groups of CAs reacted with glutaraldehyde along the capillary. CAs were immobilized at different positions in the column according to their isoelectric points (pl), resulting in a monolithic immobilized pH gradient (M-IPG). Isoelectric focusing (IEF) was performed without CAs in such an M-IPG column. Due to the covalent attachment of the CAs this M-IPG can be repeatedly used after its preparation. Good stability, linearity, and reproducibility were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three molecularly imprinted monolithic columns with different length but almost identical column volume had been prepared. It was observed that the separation factors of diastereomers and enantiomers were almost unaffected by column length. However, the short column with dimension of 38 mm x 8 mm W. showed much lower resistance to flow rate so that it could be operated at much higher flow rates. By combining stepwise gradient elution with elevated flow rate, the diastereomers of cinchonine and cinchonidine and the enantiomers of Cbz-DL-Trp and Fmoc-DL-Trp were successfully separated within 3 min on the short column with dimension of 38 mm. x 8 mm i.d.. Based on the above results, a cinchonine imprinted monolithic disk with dimension of 10 mm x 16 mm W. was further developed. The SEM image and the pore size distribution profile showed that large flow-through pores are present on the prepared monolith, which allowed mobile phase to flow through the disk with very low resistance. Chromatographic performances on the monolithic disk were almost unchanged compared with the long columns. A rapid separation of cinchonine and cinchonidine was achieved in 2.5 min at the flow rate of 9.0 ml/min. Furthermore, it was observed that there was almost no effect of the flow rate on the dynamic binding capacity at high flow rates. In addition, the effect of the loading concentration of analytes on the dynamic binding capacity, namely adsorption isotherm, was also investigated. A non-linear adsorption isotherm of cinchonine was observed on the molecularly imprinted monolith with cinchonine as template, which might be a main reason to result in the peak tailing of template molecule. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polydisperse, functionalized, chemically converted graphene (f-CCG) nanosheets, which can be homogeneously distributed into water, ethanol, DMF, DMSO and 3-aminopropyltriethoxysilane (APTS), were obtained via facile covalent functionalization with APTS. The resulting f-CCG nanosheets were characterized by FTIR, XPS, TGA, EDX, AFM, SEM, and TEM. Furthermore, the f-CCG nanosheets as reinforcing components were extended into silica monoliths. Compressive tests revealed that the compressive failure strength and the toughness of f-CCG-reinforced APTS monoliths at 0.1 wt% functionalized, chemically converted graphene sheets compared with the neat APTS monolith were greatly improved by 19.9% and 92%, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

中国科学院山西煤炭化学研究所

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent organic-inorganic hybrid monoliths containing rare-earth complexes (Eu(TTA)(3)Phen, Tb(Sal)(3)) were prepared via the sol-gel technique. It could be observed by transmission electron microscopy that the fluorescent particles are distributed in the matrix at the microscopic level. The matrix is composed of organic-inorganic semiinterpenetrating networks, i.e., PHEMA-SiO2 system. The fluorescence emission spectra of samples are similar to those from corresponding powdered Eu(III) and Tb(III) complexes, and the half-widths of the strongest bands are less than 10 nm, which indicates that the monolith exhibits high fluorescence intensity and color purity. Furthermore, the fluorescence spectra exhibit no obvious change with decreasing nanoparticle size of the rare-earth complex. The fluorescence lifetimes of samples are longer than pure Eu(III), Tb(III) complexes, respectively. Samples irradiated with an UV lamp (365 nm) are still transparent but become bright red and green in color due to fluorescence of Eu(III) and Tb(III) complexes. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock mass is widely recognized as a kind of geologic body which consists of rock blocks and discontinuities. The deformation and failure of rock mass is not only determined by rock block,but also by discontinuity which is virtually more important. Mutual cutting and combination of discontinuities controlled mechanical property of rock mass. The complex cutting of discontinuities determine the intense anisotropy on mechanical property of rock mass,especially under the effect of ground stress. Engineering practice has show that the brittle failure of hard rock always occurs when its working stress is far lower than the yield strength and compressive strength,the failure always directly related to the fracture propagation of discontinuities. Fracture propagation of discontinuities is the virtue of hard rock’s failure. We can research the rock mass discontinuous mechanical properties precisely by the methods of statistical analysis of discontinuities and Fracture Mechanics. According to Superposition Principle in Fracture Mechanics,A Problem or C Problem could be chosen to research. Problem A mainly calculates the crack-tip stress field and displacement field on internal discontinuities by numerical method. Problem C calculate the crack-tip stress field and displacement field under the assumption of that the mainly rock mass stress field has been known. So the Problem C avoid the complex mutual interference of stress fields of discontinuities,which is called crack system problem in Fracture Mechanics. To solve Problem C, field test on stress field in the rock mass is needed. The linear Superposition of discontinuities strain energies are Scientific and Rational. The difference of Fracture Mechanics between rock mass and other materials can mostly expression as:other materials Fracture Mechanics mostly face the problem A,and can’t avoid multi-crack puzzle, while the Rock mass Fracture Mechanics answer to the Problem C. Problem C can avoid multi-discontinuities mutual interference puzzle via the ground stress test. On the basis of Problem C, Fracture Mechanics could be used conveniently in rock mass. The rock mass statistics fracture constitutive relations, which introduced in this article, are based on the Problem C and the Discontinuity Strain Energy linear superposition. This constitutive relation has several merits: first, it is physical constitutive relation rather than empirical; second, it is very fit to describe the rock mass anisotropy properties; third, it elaborates the exogenous factors such as ground stress. The rock mass statistics fracture constitutive relation is the available approach to answer to the physical, anisotropic and ground stress impacted rock mass problems. This article stand on the foundation of predecessor’s statistics fractures constitutive relation, and improved the discontinuity distributive function. This article had derived the limitation of negative exponential distribution in the course of regression analysis, and advocated to using the two parameter negative exponential distribution for instead. In order to solve the problems of two-dimension stability on engineering key cross-sectional view in rock mass, this article derived the rock mass planar flexibility tensor, and established rock mass two-dimension penetrate statistics fracture constitutive relation on the basis of penetrate fracture mechanics. Based on the crack tip plasticity research production of penetrate fracture, for example the Irwin plasticity equifinality crack, this article established the way to deal with the discontinuity stress singularity and plastic yielding problem at discontinuity tip. The research on deformation parameters is always the high light region of rock mass mechanics field. After the dam foundation excavation of XiaoWan hydroelectric power station, dam foundation rock mass upgrowthed a great deal of unload cracks, rock mass mechanical property gotten intricacy and strong anisotropy. The dam foundation rock mass mostly upgrowthed three group discontinuities: the decantation discontinuity, the steep pitch discontinuity, and the schistosity plane. Most of the discontinuities have got partial unload looseness. In accordance with ground stress field data, the dam foundation stress field greatly non-uniform, which felled under the great impaction of tectonic stress field, self-weight stress field, excavation geometric boundary condition, and excavation, unload. The discontinuity complexity and stress field heterogeneity, created the rock mass mechanical property of dam foundation intricacy and levity. The research on the rock mass mechanics, if not take every respected influencing factor into consideration as best as we can, major errors likely to be created. This article calculated the rock mass elastic modulus that after Xiao Wan hydroelectric power station dam foundation gutter excavation finished. The calculation region covered possession monolith of Xiao Wan concrete double-curvature arch dam. Different monolith were adopted the penetrate fracture statistics constitutive relation or bury fracture statistics constitutive relation selectively. Statistics fracture constitutive relation is fit for the intensity anisotropy and heterogeneity rock mass of Xiao Wan hydroelectric power station dam foundation. This article had contrastive analysis the statistics fracture constitutive relation result with the inclined plane load test actual measurement elastic modulus and RMR method estimated elastic modulus, and find that the three methods elastic modulus have got greatly comparability. So, the statistics fracture constitutive relations are qualified for trust. Generally speaking,this article had finished following works based on predecessors job: “Argumentation the C Problems of superposition principle in Fracture Mechanics, establish two-dimension penetrate statistics fracture constitutive relation of rock mass, argue the negative exponential distribution limitation and improve it, improve of the three-dimension berry statistics fracture constitutive relation of rock mass, discontinuity-tip plastic zone isoeffect calculation, calculate the rock mass elastic modulus on two-dimension cross-sectional view”. The whole research clue of this article inherited from the “statistics rock mass mechanics” of Wu Faquan(1992).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZSM-5 zeolites were synthesized in situ onto cordierite honeycombs by vapor phase transport (VPT) for the first time. The as-synthesized ZSM-5/cordierite honeycombs were impregnated with IrCl3 and tested for NOx reduction with a simulated exhaust gas as the reducing agent. Under the conditions of excess oxygen, the Ir/ZSM-S/cordierite monolith catalyst exhibited NO reduction of 73% at a temperature of 573 K and a space velocity of 20,000 h(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic performance of Ir-based catalysts was investigated for the reduction of NO under lean-burn conditions over binderless Ir/ZSM-5 monoliths, which were prepared by a vapor phase transport (VPT) technique. The catalytic activity was found to be dependent not only on the Ir content, but also on the ZSM-5 loading of the monolith. With the decreasing of the Ir content or the increasing of the ZSM-5 loading of the monolith, NO conversion increased. When the ZSM-5 loading on the cordierite monolith was raised up to ca. 11% and the metal Ir content was about 5 g/l, the NO conversion reached its maximum value of 73% at 533 K and SV of 20 000 h(-1). Furthermore, both the presence of 10% water vapor in the feed gas and the variation of space velocity of the reaction gases have little effect on the NO conversion. A comparative test between Ir/ZSM-5 and Cu/ZSM-5, as well as the variation of the feed gas compositions, revealed that Ir/ZSM-5 is very active for the reduction of NO by CO under lean conditions, although it is a poor catalyst for the C3H8-SCR process. This unique property of Ir/ZSM-5 makes it superior to the traditional three-way catalyst (TWC) for NO reduction under lean conditions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A monolithic silica based strong cation-exchange stationary phase was successfully prepared for capillary electrochromatography. The monolithic silica matrix from a sol-gel process was chemically modified by treatment with 3-mercaptopropyltrimethoxysilane followed by a chemical oxidation procedure to produce the desired function. The strong cation-exchange stationary phase was characterized by its substantial and stable electroosmotic flow (EOF), and it was observed that the EOF value of the prepared column remained almost unchanged at different buffer pH values and slowly decreased with increasing phosphate concentration in the mobile phase. The monolithic silica column with strong cation-exchange stationary phase has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). The column efficiencies for the tested beta-blockers varied from 210,000 to 340,000 plates/m. A peak compression effect was observed for atenolol with the mobile phase having a low phosphate concentration.