995 resultados para Modal Identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates all the modal parameters reasonably well in the presence of 30% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cualquier estructura vibra según unas frecuencias propias definidas por sus parámetros modales (frecuencias naturales, amortiguamientos y formas modales). A través de las mediciones de la vibración en puntos clave de la estructura, los parámetros modales pueden ser estimados. En estructuras civiles, es difícil excitar una estructura de manera controlada, por lo tanto, las técnicas que implican la estimación de los parámetros modales sólo registrando su respuesta son de vital importancia para este tipo de estructuras. Esta técnica se conoce como Análisis Modal Operacional (OMA). La técnica del OMA no necesita excitar artificialmente la estructura, atendiendo únicamente a su comportamiento en servicio. La motivación para llevar a cabo pruebas de OMA surge en el campo de la Ingeniería Civil, debido a que excitar artificialmente con éxito grandes estructuras no sólo resulta difícil y costoso, sino que puede incluso dañarse la estructura. Su importancia reside en que el comportamiento global de una estructura está directamente relacionado con sus parámetros modales, y cualquier variación de rigidez, masa o condiciones de apoyo, aunque sean locales, quedan reflejadas en los parámetros modales. Por lo tanto, esta identificación puede integrarse en un sistema de vigilancia de la integridad estructural. La principal dificultad para el uso de los parámetros modales estimados mediante OMA son las incertidumbres asociadas a este proceso de estimación. Existen incertidumbres en el valor de los parámetros modales asociadas al proceso de cálculo (internos) y también asociadas a la influencia de los factores ambientales (externas), como es la temperatura. Este Trabajo Fin de Máster analiza estas dos fuentes de incertidumbre. Es decir, en primer lugar, para una estructura de laboratorio, se estudian y cuantifican las incertidumbres asociadas al programa de OMA utilizado. En segundo lugar, para una estructura en servicio (una pasarela de banda tesa), se estudian tanto el efecto del programa OMA como la influencia del factor ambiental en la estimación de los parámetros modales. Más concretamente, se ha propuesto un método para hacer un seguimiento de las frecuencias naturales de un mismo modo. Este método incluye un modelo de regresión lineal múltiple que permite eliminar la influencia de estos agentes externos. A structure vibrates according to some of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). Through the measurements of the vibration at key points of the structure, the modal parameters can be estimated. In civil engineering structures, it is difficult to excite structures in a controlled manner, thus, techniques involving output-only modal estimation are of vital importance for these structure. This techniques are known as Operational Modal Analysis (OMA). The OMA technique does not need to excite artificially the structure, this considers its behavior in service only. The motivation for carrying out OMA tests arises in the area of Civil Engineering, because successfully artificially excite large structures is difficult and expensive. It also may even damage the structure. The main goal is that the global behavior of a structure is directly related to their modal parameters, and any variation of stiffness, mass or support conditions, although it is local, is also reflected in the modal parameters. Therefore, this identification may be within a Structural Health Monitoring system. The main difficulty for using the modal parameters estimated by an OMA is the uncertainties associated to this estimation process. Thus, there are uncertainties in the value of the modal parameters associated to the computing process (internal) and the influence of environmental factors (external), such as the temperature. This Master’s Thesis analyzes these two sources of uncertainties. That is, firstly, for a lab structure, the uncertainties associated to the OMA program used are studied and quantified. Secondly, for an in-service structure (a stress-ribbon footbridge), both the effect of the OMA program and the influence of environmental factor on the modal parameters estimation are studied. More concretely, a method to track natural frequencies of the same mode has been proposed. This method includes a multiple linear regression model that allows to remove the influence of these external agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary algorithms are suitable to solve damage identification problems in a multiobjective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this paper, a statistic structural damage detection method formulated in a multiobjective context is proposed. The statistic analysis is implemented to take into account the uncertainties existing in the structural model and measured structural modal parameters. The presented method is verified by a number of simulated damage scenarios. The effects of noise and damage levels on damage detection are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary algorithms are suitable to solve damage identification problems in a multi-objective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this paper, a statistic structural damage detection method formulated in a multi-objective context is proposed. The statistic analysis is implemented to take into account the uncertainties existing in the structural model and measured structural modal parameters. The presented method is verified by a number of simulated damage scenarios. The effects of noise and damage levels on damage detection are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una estructura vibra con la suma de sus infinitos modos de vibración, definidos por sus parámetros modales (frecuencias naturales, formas modales y coeficientes de amortiguamiento). Estos parámetros se pueden identificar a través del Análisis Modal Operacional (OMA). Así, un equipo de investigación de la Universidad Politécnica de Madrid ha identificado las propiedades modales de un edificio de hormigón armado en Madrid con el método Identificación de los sub-espacios estocásticos (SSI). Para completar el estudio dinámico de este edificio, se ha desarrollado un modelo de elementos finitos (FE) de este edificio de 19 plantas. Este modelo se ha calibrado a partir de su comportamiento dinámico obtenido experimentalmente a través del OMA. Los objetivos de esta tesis son; (i) identificar la estructura con varios métodos de SSI y el uso de diferentes ventanas de tiempo de tal manera que se cuantifican incertidumbres de los parámetros modales debidos al proceso de estimación, (ii) desarrollar FEM de este edificio y calibrar este modelo a partir de su comportamiento dinámico, y (iii) valorar la bondad del modelo. Los parámetros modales utilizados en esta calibración han sido; espesor de las losas, densidades de los materiales, módulos de elasticidad, dimensiones de las columnas y las condiciones de contorno de la cimentación. Se ha visto que el modelo actualizado representa el comportamiento dinámico de la estructura con una buena precisión. Por lo tanto, este modelo puede utilizarse dentro de un sistema de monitorización estructural (SHM) y para la detección de daños. En el futuro, podrá estudiar la influencia de los agentes medioambientales, tales como la temperatura o el viento, en los parámetros modales. A structure vibrates according to the sum of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). These parameters can be identified through Operational Modal Analysis (OMA). Thus, a research team of the Technical University of Madrid has identified the modal properties of a reinforced-concrete-frame building in Madrid using the Stochastic Subspace Identification (SSI) method and a time domain technique for the OMA. To complete the dynamic study of this building, a finite element model (FE) of this 19-floor building has been developed throughout this thesis. This model has been updated from its dynamic behavior identified by the OMA. The objectives of this thesis are to; (i) identify the structure with several SSI methods and using different time blocks in such a way that uncertainties due to the modal parameter estimation are quantified, (ii) develop a FEM of this building and tune this model from its dynamic behavior, and (iii) Assess the quality of the model, the modal parameters used in this updating process have been; thickness of slabs, material densities, modulus of elasticity, column dimensions and foundation boundary conditions. It has been shown that the final updated model represents the structure with a very good accuracy. Thus, this model might be used within a structural health monitoring framework (SHM). The study of the influence of changing environmental factors (such as temperature or wind) on the model parameters might be considered as a future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional feed forward Neural Networks have used the sum-of-squares cost function for training. A new cost function is presented here with a description length interpretation based on Rissanen's Minimum Description Length principle. It is a heuristic that has a rough interpretation as the number of data points fit by the model. Not concerned with finding optimal descriptions, the cost function prefers to form minimum descriptions in a naive way for computational convenience. The cost function is called the Naive Description Length cost function. Finding minimum description models will be shown to be closely related to the identification of clusters in the data. As a consequence the minimum of this cost function approximates the most probable mode of the data rather than the sum-of-squares cost function that approximates the mean. The new cost function is shown to provide information about the structure of the data. This is done by inspecting the dependence of the error to the amount of regularisation. This structure provides a method of selecting regularisation parameters as an alternative or supplement to Bayesian methods. The new cost function is tested on a number of multi-valued problems such as a simple inverse kinematics problem. It is also tested on a number of classification and regression problems. The mode-seeking property of this cost function is shown to improve prediction in time series problems. Description length principles are used in a similar fashion to derive a regulariser to control network complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors would like to thank their supporters. New Zealand Earthquake Commission (EQC) Research Foundation provided financial support for experimental work (Grant No. UNI/578). New Zealand Transport Agency (NZTA) provided access to the bridge. Piotr Omenzetter’s work within the LRF Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research. Ge-Wei Chen’s doctoral study is supported by China Scholarship Council (CSC) (Grant No. 2011637065).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advancements in retinal imaging technologies have drastically improved the quality of eye care in the past couple decades. Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) are two examples of critical imaging modalities for the diagnosis of retinal pathologies. However current-generation SLO and OCT systems have limitations in diagnostic capability due to the following factors: the use of bulky tabletop systems, monochromatic imaging, and resolution degradation due to ocular aberrations and diffraction.

Bulky tabletop SLO and OCT systems are incapable of imaging patients that are supine, under anesthesia, or otherwise unable to maintain the required posture and fixation. Monochromatic SLO and OCT imaging prevents the identification of various color-specific diagnostic markers visible with color fundus photography like those of neovascular age-related macular degeneration. Resolution degradation due to ocular aberrations and diffraction has prevented the imaging of photoreceptors close to the fovea without the use of adaptive optics (AO), which require bulky and expensive components that limit the potential for widespread clinical use.

In this dissertation, techniques for extending the diagnostic capability of SLO and OCT systems are developed. These techniques include design strategies for miniaturizing and combining SLO and OCT to permit multi-modal, lightweight handheld probes to extend high quality retinal imaging to pediatric eye care. In addition, a method for extending true color retinal imaging to SLO to enable high-contrast, depth-resolved, high-fidelity color fundus imaging is demonstrated using a supercontinuum light source. Finally, the development and combination of SLO with a super-resolution confocal microscopy technique known as optical photon reassignment (OPRA) is demonstrated to enable high-resolution imaging of retinal photoreceptors without the use of adaptive optics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service.

This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses.

The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of determining the script and language of a document image has a number of important applications in the field of document analysis, such as indexing and sorting of large collections of such images, or as a precursor to optical character recognition (OCR). In this paper, we investigate the use of texture as a tool for determining the script of a document image, based on the observation that text has a distinct visual texture. An experimental evaluation of a number of commonly used texture features is conducted on a newly created script database, providing a qualitative measure of which features are most appropriate for this task. Strategies for improving classification results in situations with limited training data and multiple font types are also proposed.